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Abstract—In this work we study the problem of diffraction
of an acoustic plane wave by a planar angular sector with the
Dirichlet boundary condition on its surface. By means of the
incomplete separation of variables, with the aid of the Watson-
Bessel integral representation the problem is reduced to an
infinite system of linear summation equations of the second
kind. Exploiting the reduction of the integral representation
to that of the Sommerfeld type, a consequent procedure is
then developed in order to describe different components in
the far field asymptotics. To that end, the analytic properties
and singularities of the integrand in the Sommerfeld integral
are carefully studied. The latter play a crucial role when
evaluating the Sommerfeld integral by means of the saddle point
technique, because these singularities are captured in the process
of deformation of the Sommerfeld contours into the steepest
descent paths. The corresponding asymptotic contributions of the
singularities lead to description of the different types of waves
in the far field asymptotics. These are the waves reflected from
the sector, the waves from the edges including those multiply
diffracted from one edge to another. The spherical wave from
the vertex of the sector is specified by the saddle points. The
singularities migrate, provided the observation point moves, and
may coalesce with each other and with the saddle points, which
requires more accurate asymptotic evaluation of the Sommerfeld
integral in terms of the transition special functions closely related
to the Fresnel integral.

I. INTRODUCTION
The work is devoted to a new approach developed with the

aim of description of the far field asymptotics in the problem
of diffraction by a plane angular sector. It is obvious that a
sector is an example of a degenerate elliptic cone. Consider
unit sphere with the center at the sector’s vertex then the sector
and the sphere are intersected across a segment AB of a big
circle, Fig. 1. We assume that the angular measure 2a of the
corresponding arc satisfies the restrictions 0 < 2a < π. One of
the most interesting cases is the quarter-plane corresponding
to 2a = π/2.
It seems that study of diffraction by a plane sector began by

considering this problem as a limiting case of diffraction by an
elliptic cone [1] when one axis shrinks into a point. The exact
and numerical solution is studied in the work [2] (see also [3]).
The solution given in the work [4] is discussed in [5], where it
is claimed to be erroneous. Some recent results are connected
with calculation of the diffraction coefficient of the spherical
wave for a quarter-plane [6],[7] that was developed in [8]. The

formulas for the scattered waves are obtained in the paper [9],
where the authors apply an approach based on a set physical
postulates which are closely connected with the well-known
localization principle in short-wave length diffraction theory.
Analogous results are discussed in the work [10] except doubly
diffracted edge waves. The approach utilized in the paper [11]
is, in a sense, close to that used in the present work. After
separation of the radial variable the author of [11] studies
the leading terms of the asymptotics with respect to the large
spectral parameter for the ‘stationary’ problem on the unit
sphere with the cut. In our work we also use a similar ideology,
however, we prefer to apply a ‘non-stationary’ version of the
diffraction theory in a problem for hyperbolic equation on
the unit sphere. In the framework of the Sommerfeld integral
formalism we carefully investigate real singularities of the
unknown function (Sommerfeld transformant) in the intergand.
These singularities are responsible for different components
in the far field obtained from asymptotic evaluation of the
Sommerfeld integral. Actually the ‘stationary’ approach of
[11] and that exploited in this work are connected by the
Fourier transform.

II. DESCRIPTION OF THE APPROACH

In the following we formulate the problem of diffraction
of an acoustic plane wave by a plane sector with the angular
opening 2a. The wave field satisfies the Helmholtz equation,
the Dirichlet boundary conditions, the Meixner’s conditions at
the edges and that at the vertex.
In order to formulate conditions at infinity we, in the next

section, introduce a set of characteristic domains of the unit
sphere centered at the vertex of the sector. Each point of
such a domain on the sphere is attributed to some direction
of observation. In different characteristic domains the far
field asymptotics consists of different wave field components.
Near the common boundary of two adjacent domains the
asymptotics is described by a corresponding transition spe-
cial function which appropriately matches local asymptotic
expressions in these domains. Sometimes such directions are
called singular ones because diffraction coefficients (or, in
other words, scattering amplitudes) in the local asymptotics
are singular there.
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One of the main goals of this work is description of a
method (see Chapters 5,6 in [12], where it is applied for
an impedance cone) which enables one to give the far field
asymptotic expressions for the problem.
To that end, we use the Watson-Bessel integral representa-

tion for the solution in order to separate radial variable and
to formulate the problem for the unknown ‘spectral’ function
on the unit sphere with the cut AB. By means of further
separation of the spherical variables we arrive at the summa-
tion linear system of the second kind for the corresponding
Fourier coefficients of the series for the spectral function.
In order to compute the far field asymptotics the Watson-
Bessel representation of the solution is then reduced to the
Sommerfeld integral, whereas the Sommerfeld transformant is
nothing but the Fourier transform of the spectral function.
The Sommerfeld integral is asymptotically computed in

order to obtain the far field expressions. To that end, the Som-
merfeld contours are deformed into the steepest descent paths
(SDP) passing through the saddle points ±π. In the process
of such deformation the singularities of the transformants can
be captured. These singularities are poles or branch points.
Location of such singularities depends upon the observation
point and they migrate with the variation of the observation
direction. Contribution of the saddle points gives rise to the
spherical wave from the vertex, whereas the contributions
from the singularities are responsible for the reflected or other
diffracted waves. The directions in which the fronts of two or
more waves are tangent correspond to the singular directions.
In these directions the singularities coalesce with each other or
(and) with the saddle points. The asymptotics is described by
special transition functions in this case. As a result, an essential
part of the analysis deals with the study of the singularities.
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Fig. 1. Diffraction by a sector

A. Formulation of the Problem
Introduce the spherical coordinates (r,ϑ,ϕ) attributed to the

Cartesian ones by the correlations

X1 = r cosϕ sinϑ, X2 = r sinϕ sinϑ, X3 = r cosϑ.

A plane wave is incident from the direction specified by ω0 =
(ϑ0,ϕ0) ( Fig. 1.1)

Ui(r,ϑ,ϕ) = exp{−ikr cos θi(ω,ω0)}, (1)
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Fig. 2. The triangular domain Ωr with the vertexes A, B, Fr on S2

where ω = (ϑ,ϕ) corresponds to the direction of observation
and cos θi(ω,ω0) = cosϑ cosϑ0 + sinϑ sinϑ0 cos[ϕ − ϕ0].1
The total wave field U(r,ϑ,ϕ)+Ui(r,ϑ,ϕ) is the sum of the
scattered and incident fields,

(� + k2)U(r,ϑ,ϕ) = 0, (2)

k > 0 is the wave number. The Dirichlet boundary condition

(Ui + U)|S = 0, (3)

is satisfied on the sector S, S = {(r,ω) : r ≥ 0,ω ∈ AB}.
Sometimes we shall denote the closed arc AB by σ, σ =
S ∩ S2. The Meixner’s edge condition is postulated near the
edges ∂S1,2 (and outside the close vicinity of the vertex)

U ∼ C1,2(z)ρ
1/2, ρ → 0 (4)

uniformly with respect to φ, where ρ,φ, z are natural local
cylindrical coordinates attributed to the edges ∂S1,2 which we
also denote A,B. The conditions at the vertex of the sector
read

|U | ≤ C r−1/2, |∇U | ≤ C r−3/2, r → 0 (5)

which are valid uniformly with respect to the angular variables.
Description of far field behavior is the main goal of the paper.

B. The far field behavior
In order to give a detailed description of the far field

components in the scattered wave it is reasonable to use
some simple geometrical constructions and to define some sub-
domains on the unit sphere S2 with the cut σ = AB. Consider
the geodesic distance θ(ω,ω0) between two points ω and ω0

on the sphere S2 which satisfies the eikonal equation

(∇ωθ(ω,ω0))
2 = 1, (6)

where ∇ω = �eϑ
∂

∂ϑ + �eϕ
1

sin ϑ
∂

∂ϕ is the gradient operator on
the unit sphere. It is obvious that θi(ω,ω0) defined above
coincides with θ(ω,ω0).

1The harmonic time-dependence e−i�ωt is assumed and suppressed through-
out the paper.

Proceedings of the "2013 International Symposium on Electromagnetic Theory"

894 



 

 

 

 

  

 

 

 

·                              

· 

 

 

X 3 

F i 

B

A

S
 2 

0  

r
* 

Fig. 3. The triangular domain Ω∗
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Fig. 4. The circular domain ΩA on S2

In the same manner, introduce the ‘broken’ geodesic
θr(ω,ω0),

θr(ω,ω0) = min
l∈σ

(θ(ω, l) + θ(l,ω0)) (7)

which fulfills the equation

(∇ωθr(ω,ω0))
2 = 1. (8)

The geodesic corresponding to the solution (7) of the equation
(8) has simple geometrical meaning: this is a broken geodesic
of the minimal length which originates at the source ω0 then
reflects on the boundary σ = AB in accordance with geomet-
rical optics laws and arrives at the point ω. The ‘incident’ parts
of such broken geodesics fill in the spherical triangle Aω0B
in Fig. 1.2, whereas the ‘reflected’ parts fill in the spherical
triangle FrBA which is further denoted Ωr.

In the same manner we specify the spherical triangular
domain Ω∗

r coinciding with the triangle ABFi in Fig. 1.3.
This domain is bounded by σ and by the corresponding parts
of two geodesics emanated at ω0 passed through the points A
and B and arrived at the common point of their intersection Fi.
Remark that the length of each geodesic ω0AFi and ω0BFi

is equal to π. It is worth mentioning that points Fi and Fr

are correspondingly the points of focusing of the incident and
reflected geodesics having common points with the cut σ. It
is obvious that the domain Ω∗

r is the mirror image of Ωr with
respect to the boundary σ for the same fixed position of ω0.
Now we specify additionally two other domains ΩA (see

Fig. 1.4) and ΩB . Consider the ray (geodesic) ω0A which ar-
rives at the edge point A and produces a set of ‘diffracted’ rays
(geodesics) outgoing from A in all direction. For each point
ω there exists such a diffracted ray with length ψA, (ψA < π)

that arrives at this point. We define ΩA as a circle on the
sphere such that ΩA = {ω ∈ S2 : 0 ≤ θA(ω,ω0) :=
θ(A,ω0) + ψA < π}. The eikonal θA(ω,ω0) satisfies the
equation

(∇ωθA(ω,ω0))
2 = 1. (9)

In quite similar manner the domain ΩB is specified, ΩB =
{ω ∈ S2 : 0 ≤ θB(ω,ω0) := θ(ω0, B) + ψB < π}, i.e. it
is a circle on S2 centered at B with θB(ω,ω0) satisfying the
equation

(∇ωθB(ω,ω0))
2 = 1. (10)

ψB is the length of the geodesic emanated from the point B.
The spherical domains ΩA and ΩB intersect with Ωr and Ω∗

r

and with each other. The domain Ω∗

r corresponds to directions
in which geometrical shadow of the incident wave is observed.
Ωr forms a set of directions of propagation of the space
rays reflected from the sector S. The directions specified by
ΩA (or by ΩB) correspond to the directions in which the
diffracted from the edge A (or from B) space cylindrical
wave is observed. These simple facts follow from the analysis
represented below in this paper.
Remark. It is worth commenting that we can also introduce

domain ΩAB (and analogously ΩBA) which corresponds to
all ‘rays’ that originate from ω0, arrive at the point A going
along the arc AB to the edge point B then along a geodesic
arrive at ω. The length θAB(ω,ω0) := θ(ω0, A) + 2a +
ψB of such a compound geodesic should be less than π,
which specifies ΩAB . The corresponding space wave is the
cylindrical wave from the edge A propagating to the edge
B and diffracted there and arrive at the observation point.
The domains ΩABA,ΩBAB ,ΩABAB . . . , etc. are defined and
interpreted quite analogously.

III. BASIC RESULTS
We consider the domain Ω0 = S2 \ (ΩA ∪ ΩB ∪ Ωr) on

the sphere S2, which is called ‘oasis’.2 The scattered far field
(total minus incident) in this domain of directions consists of
the spherical wave propagating from the vertex of the sector

U(r,ϑ,ϕ) = D(ω,ω0)
exp(ikr)

−ikr

�
1 + O

�
1

kr

��
, kr → ∞.

(11)
In the non-uniform with respect to the observation angles
asymptotics (11) the diffraction coefficient D(ω,ω0) is to be
determined from the further analysis and is one of the most
important characteristics of the scattered field. The asymp-
totics (11) fails provided the observation point approaches the
boundary of Ω0. As it has been already remarked near the
boundaries of the domains Ωs, s = 0, r, A,B, . . . some spe-
cial transition functions apply to match the local asymptotics.
In the exterior of the oasis the structure of asymptotics is

more complex and contains also other wave components in
the far field. Consider the directions from (S2 \ (Ω∗

r ∪ Ωr ∪
ΩB)) ∩ ΩA in which the spherical wave and the cylindrical

2Remark that Ω∗

r and Ωr are covered by ΩA ∪ ΩB .
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wave from the edge A (as well as possibly multiply diffracted)
are observed in the far field

U(r,ϑ,ϕ) = D(ω,ω0)
exp(ikr)

−ikr

�
1 + O

�
1

kr

��
+

dA(ω,ω0)
exp(−ikr cos θA(ω,ω0))√

−ikr sinψA

�
1 + O

�
1

kr sinψA

��

+ . . . ,
(12)

where dots denote the multiply diffracted from the edges
waves, provided the corresponding directions belong also
to ΩBA,ΩABA, . . . .3 The unknown yet function dA(ω,ω0)
in (12) is connected with the diffraction coefficient of the
cylindrical wave from the edge A.
In the domain (S2 \ (Ω∗

r ∪Ωr ∪ΩA))∩ΩB the asymptotics
has the same form as in (12) with the change of the subscript
A on to B in the second summand which the describes the
cylindrical wave from the edge B.
In the directions ω from Ωr ∩ (ΩB ∪ΩA) the leading terms

consist of the reflected, spherical and diffracted from the edges
A and B waves
U(r,ϑ,ϕ) = R exp(−ikr cos θr(ω,ω0))+

D(ω,ω0)
exp(ikr)

−ikr

�
1 + O

�
1

kr

��
+

dA(ω,ω0)
exp(−ikr cos θA(ω,ω0))√

−ikr sinψA

�
1 + O

�
1

kr sinψA

��
+

dB(ω,ω0)
exp(−ikr cos θB(ω,ω0))√

−ikr sinψB

�
1 + O

�
1

kr sinψB

��
+

. . . ,
(13)

where R = −1 in the first summand Ur(ω,ω0) =
R exp(−ikr cos θr(ω,ω0)) of (13) which is the reflected wave.
The total wave field U + Ui in the shadow of the incident

wave, i.e. as ω ∈ Ω∗

r ∩ (ΩB ∪ ΩA), reads

U(r,ϑ,ϕ) + Ui(r,ϑ,ϕ) =

D(ω,ω0)
exp(ikr)

−ikr

�
1 + O

�
1

kr

��
+

dA(ω,ω0)
exp(−ikr cos θA(ω,ω0))√

−ikr sinψA

�
1 + O

�
1

kr sinψA

��
+

dB(ω,ω0)
exp(−ikr cos θB(ω,ω0))√

−ikr sinψB

�
1 + O

�
1

kr sinψB

��

+ . . . ,
(14)

kr → ∞.
It is worth commenting that in the direction correspond-

ing to the points Fr (θr ∼ π, θA ∼ π, θB ∼ π) or Fi

(θi ∼ π, θA ∼ π, θB ∼ π) the wave field behavior is the most
complex because in this direction at least two transition regions

3Usually these waves are neglected in comparison with the first two terms.

intersect. In this directions the wave fronts of the spherical,
reflected (or incident) and edge waves are tangent. As we
show below this corresponds to approaching the corresponding
singularities of the Sommerfeld transformants to the saddle
point ±π. Some results on the far field behavior in these
directions can be found in [11].
In the report we intend to give a systematic procedure in

order to demonstrate the anticipated asymptotics in (11)–
(14) and to obtain formulas for the diffraction coefficients.

IV. CONCLUSION
In this work we developed a self-consistent procedure in

order to derive the far field asymptotics in the problem of
diffraction by a plane sector. It is based on flexible use of
the integral transforms of the solution, study of its analytic
properties, namely, of the singularities of the Sommerefeld
transformants. Further use of the saddle point technique en-
abled us to derive the desired asymptotics. The similar ideas
have been exploited for the description of the far field scattered
by an impedance cone [12]. It is remarkable that the approach
can be additionally modified and adapted to the problem of
diffraction by a pyramidal cone so that the problem at hand
is an important step towards this goal.
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