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Abstract— Electromagnetic scattering by a bounded object
located inside a parallel plate waveguide is the subject of this
paper. The exciting field in the waveguide is either an arbitrary
source located at a finite distance from the obstacle or a plane
wave generated in the far zone. The analytic treatment of the
problem relies on an extension of the null field approach or T-
matrix method.

I. INTRODUCTION

Recent theoretical progress in the development of useful
scattering identities — sum rules [1] – have initiated several
attempts to verify these identities experimentally, see e.g., [2].
These sum rules relate the dynamical behavior of the scattering
and absorption behavior of the scatterer to the static properties
of the scatterer (polarizability dyadics).

Initial investigations show that the parallel plate waveguide
is accessible [2, 3]. A detailed investigation of the static
properties of an obstacle between two parallel plates has also
been reported recently [4].

The approach employs the integral representation of the so-
lution. This integral representation approach to solve the scat-
tering problem was originally introduced by Peter Waterman
for finite scatterers, and it has proven to be a very powerful and
useful technique to solve a large variety of scattering problems,
not only electromagnetic, but also acoustic and elastodynamic
problems. In fact, the present geometry is an extension of
the results with buried obstacle close to a planar interface —
layered or not, see e.g., [5, 6].

II. FORMULATION OF THE PROBLEM

A finite scatterer with bounding surface Ss defines the
region Vs. Two infinite, perfectly conducting planes, S+ and
S−, confine the regions Ve and Vs, see Figure 1. These planes
are parameterized by z = z+ and z = z−, respectively. The
regions above S+ and below S− are denoted by V+ and V−,
respectively. The sources of the problem are assumed to be
locates in Vi ⊂ Ve, between the surfaces S+ and S−.

To proceed, the time-harmonic electric and magnetic fields
satisfy the free-space Maxwell equations in Ve (we use the
time convention exp{−iωt}),{

∇×E(r) = ik0η0H(r)

∇× η0H(r) = −ik0E(r)
r ∈ Ve (1)
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Fig. 1. The geometry of the direct scattering problem with two perfectly
conducting planes S+ and S− and a scatterer with bounding surface Ss.

where k0 = ω/c0 and η0 are the wave number and wave
impedance in free space, respectively. The boundary condi-
tions on the bounding surfaces are{

ẑ ×E(r) = 0, r ∈ S+ ∪ S−
ν̂ ×E(r) = 0, r ∈ Ss

(2)

The scatterer Vs is here assumed to be a perfectly conducting
body. This assumption can easily be relaxed.

A. Integral representation of the solution

Let Ei denote the incident electric field with sources located
in Ve, and define the scattered electric field Es = E − Ei.
The incident field Ei is the field with no obstacle or plates
present. With the directions of the unit normals defined as
in Figure 1, the solution of (1) and (2) satisfies the surface
integral representation [7]

− 1

ik0
∇×

(
∇×

∫∫
S+∪S−∪Ss

Ge(k0, |r − r′|) ·K(r′) dS′
)

=

{
Es(r), r ∈ Ve
−Ei(r), r ∈ V+ ∪ V− ∪ Vs

(3)

where K = ν̂ × η0H , and the electric Green’s dyadic

Ge(k0, |r − r′|) =

(
I3 +

1

k20
∇∇

)
eik0|r−r

′|

4π|r − r′|
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The integral representation also contains a surface integral
evaluated at large lateral distances, but proper radiation condi-
tions at large lateral distances make this integral vanish. This
surface integral representation is the starting point in the null-
field approach.

III. BASIS FUNCTIONS AND EXPANSIONS

A. Spherical and planar vector waves

To proceed, out-going or radiating spherical vector waves,
uτσml(kr) = uτn(kr) = un(kr), and regular spherical vec-
tor waves, vτσml(kr), are employed. We adopt the definition
in [8, 9].

The most appropriate basis functions to deal with the
geometry of the parallel plates are planar waves. We define
the dimension-less, vector-valued plane waves, ϕ±j (kt; r),
j = 1, 2, as:

ϕ±1 (kt; r) =
ẑ × kt
4πikt

eikt·ρ±ikzz

ϕ±2 (kt; r) =
∓ktkz + k2t ẑ

4πk0kt
eikt·ρ±ikzz

where the transverse (tangential) wave vector and the spatial
position vector in the plane are

kt = x̂kx + ŷky, kx, ky ∈ R, ρ = xx̂+ yŷ

The length of the transverse wave vector is always a real
number, viz.,

kt = |kt| =
√
k2x + k2y

and kz is defined by

kz =
(
k20 − k2t

)1/2
=


√
k20 − k2t for kt < k0

i
√
k2t − k20 for kt > k0

The plus super-index denotes an exponentially decreasing
inhomogeneous or evanescent wave as z →∞, and similarly
for the minus super index as z → −∞. The index j = 1 labels
the TE-waves, and j = 2 labels the TM-waves.

B. Green’s dyadic decompositions

The Green’s dyadic is decomposed in spherical vector
waves [8]

Ge(k0, |r − r′|) = ik0
∑
n

vn(k0r<)un(k0r>)

= ik0
∑
n

un(k0r>)vn(k0r<) (4)

where r< (r>) is the position vector with the smallest (largest)
distance to the origin, i.e., if r < r′ then r< = r and r> = r′.
The summation is over the divergence-free vector spherical
vector waves, τ = 1, 2. Moreover, we need the decomposition
of the Green’s dyadic in planar vector waves [8]

Ge(k0, |r − r′|)

= 2ik0
∑
j=1,2

∫∫
R2

ϕ±j (kt; r)ϕ∓j
†
(kt; r

′)
k0
kz

dkx dky
k20

(5)

where the upper (lower) is used if z > z′ (z < z′), and where
the dagger corresponds to a change kt → −kt.

C. Transformation between solutions

To connect the spherical vector waves and the planar vector
waves, we need a transformation between the two sets of
solutions. The result that is relevant in the analysis below
are [8, p. 183]

un(k0r)

= 2
∑
j=1,2

∫∫
R2

B±nj(kt)ϕ
±
j (kt; r)

k0
kz

dkx dky
k20

, z ≷ 0 (6)

where

B±nj(kt)

= i−l+τClm(±1)l+m

{
∓δτj∆m

l (kz/k0)

{
cosmβ
sinmβ

}

− δτjπ
m
l (kz/k0)

{
− sinmβ
cosmβ

}}
(7)

and where kt = kt(x̂ cosβ + ŷ sinβ), Clm are normalization
constants [9], and

∆m
l (t) = −

(
1− t2

)1/2√
l(l + 1)

Pml
′(t)

πml (t) =
mPml (t)√

l(l + 1) (1− t2)
1/2

(8)

IV. INCIDENT ELECTRIC FIELD

The sources of the incident field are assumed to be located
between the plates S± and outside the scatterer Vs. Due to
the completeness of the planar vector waves and the spherical
vector waves, the incident electric field is assumed to have the
following expansions in the three regions, V± and Vs:

Ei(r) =
∑
j=1,2

∫∫
R2

a±j (kt)ϕ
±
j (kt; r)

dkx dky
k20

, r ∈ V± (9)

where the upper (lower) sign holds for V+ (V−), and

Ei(r) =
∑
n

anvn(k0r), r ∈ VR (10)

where VR is a sphere of radius R that does not include the
circumscribing sphere of the source region. The coefficients
a±j (kt) and an are assumed known.

V. UTILIZING THE SURFACE INTEGRAL REPRESENTATION

The position vector, r, can take four different principle
positions, r ∈ V±, r ∈ Vs, and r ∈ Ve. We now explore
these possibilities. The decompositions of the Green’s dyadic
in spherical and planar vector waves, see (4) and (5) are now
used.
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When the position vector is either in V+ or in V−, the lower
line of (3) using (4), (5), (6), and (9) yield, since the planar
vector waves are linearly independent

a±j (kt) = 2k20
k0
kz

∫∫
S+∪S−

ϕ∓j
†
(kt; r

′) ·K(r′) dS′

+ 2k20
k0
kz

∑
n

B±nj(kt)

∫∫
Ss

vn(k0r
′) ·K(r′) dS′

(11)
When the position vector is inside the largest sphere en-

closed in Vs, the lower line of (3) using (4), (6), and (9) yield

an = k20

∫∫
Ss

un(k0r
′) ·K(r′) dS′

+ 2k30
∑
j=1,2

∫∫
R2

B+
nj(kt)

∫∫
S+

ϕ+
j (kt; r

′) ·K(r′) dS′
dkx dky
kzk20

+2k30
∑
j=1,2

∫∫
R2

B−nj(kt)

∫∫
S−

ϕ−j (kt; r
′)·K(r′) dS′

dkx dky
kzk20

(12)

since the regular spherical vector waves, vn(k0r), are linearly
independent.

When the position vector is outside the circumscribing
sphere of Ss in Ve, the upper line of (3) using (4), (5), (6),
and (9) yield

Es(r) =
∑
n

fnun(k0r)

+
∑
j=1,2

∫∫
R2

f+j (kt)ϕ
+
j (kt; r)

dkx dky
k20

+
∑
j=1,2

∫∫
R2

f−j (kt)ϕ
−
j (kt; r)

dkx dky
k20

(13)

where
fn = −k20

∫∫
Ss

vn(k0r
′) ·K(r′) dS′

f±j (kt) = −2k20
k0
kz

∫∫
S∓

ϕ∓j
†
(kt; r

′) ·K(r′) dS′
(14)

VI. EXPANSION AND ELIMINATION OF THE SURFACE
FIELDS

Expand the currents on the surfaces in planar vector waves
and a complete set of tangential vector functions, ν̂ ×ψn, on
Ss. We assume

K(r) =
∑
j=1,2

∫∫
R2

α±j (kt)ẑ ×ϕ∓j (kt; r)
dkx dky
k20

, r ∈ S±

and
K(r) =

∑
n

αnν̂(r)×ψn(r), r ∈ Ss

where the dual index j is defined 1 = 2 and 2 = 1.

Insert these expansions in (11) and (12), use the orthogo-
nality of the planar vector waves and solve for the unknown
coefficients α±j (kt) and αn. The result is

α±j (kt) = ∓2i
a∓j (kt) + a±j (kt)(−1)je±2ikzz∓

1− e−2ikzd

∓ 4i
k0
kz

∑
nn′

B∓nj(kt) +B±nj(kt)(−1)je±2ikzz∓

1− e−2ikzd

× Tnn′ (an′ + γn′) (15)

where the distance between the plates is d = z+ − z−, the
T-matrix, Tnn′ , of the scatterer is defined in [10], and

γn =
1

2i

∑
j=1,2

∫∫
R2

(
α+
j (kt)B

−†
nj (kt)

− α−j (kt)B
+†
nj (kt)

)
dkx dky
k20

(16)

Insert the formulas of α±j (kt) from above in the expression
for γn in (16), and we obtain an infinite set of equations that
can be solved for every specified incident field. We write as

cn = dn +
∑
n′n′′

Ann′Tn′n′′cn′′ (17)

where the array cn = an+γn, and the dn vector is defined as

dn = −
∑
j=1,2

∫∫
R2

a+j (kt)

×
B+†
nj (kt) + (−1)je2ikzz−B−†nj (kt)

1− e−2ikzd
dkx dky
k20

−
∑
j=1,2

∫∫
R2

a−j (kt)

×
B−†nj (kt) + (−1)je−2ikzz+B+†

nj (kt)

1− e−2ikzd
dkx dky
k20

+ an (18)

and the A matrix is

Ann′ = −2
∑
j=1,2

∫∫
R2

B−†nj (kt)

×
B−n′j(kt) + (−1)je2ikzz−B+

n′j(kt)

1− e−2ikzd
k0
kz

dkx dky
k20

− 2
∑
j=1,2

∫∫
R2

B+†
nj (kt)

×
B+
n′j(kt) + (−1)je−2ikzz+B−n′j(kt)

1− e−2ikzd
k0
kz

dkx dky
k20

(19)

The A matrix is independent of the excitation and the scatterer,
and the entries can be computed once and for all and stored
for later use.
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Fig. 2. The scattering cross section, σs, for a PEC sphere of radius a as
a function of k0d and incident vertically polarized plane wave. The cross
section is scaled with d2. The location of the planes are z±/d = ±0.5.

Finally, we get the expansion coefficients of the scattered
field as, see (14) 

fn =
∑
n′

Tnn′cn′

f±j (kt) = ∓ 1

2i
α∓j (kt)

(20)

VII. THE PRIMARY AND SECONDARY FIELDS

The total electric field E(r) between the plates can be
decomposed in several ways. Above, we decomposed the
total field as E(r) = Ei(r) + Es(r). As an alternative
to this decomposition of the electric field, we introduce a
decomposition in terms of a primary and secondary field, i.e.,

E(r) = Ei(r) +Es(r) = Eprim(r) +Esec(r)

The explicit expression of these fields are found in Ref. [9].
The field Eprim(r) is the total electric field in the absence of
the scatterer (surfaces S+ and S− present), and Esec(r) is the
correction due to the presence of the scatterer.

All integrals that appear in the calculations can be evaluated
exactly by calculus of residues [9], except for the entries of
the A matrix, which can be evaluated exactly in terms of the
Lerch function [11]

Φ(β, ν, µ) =

∞∑
n=0

βn

(µ+ n)ν

VIII. NUMERICAL EXAMPLES

The first propagating mode is taken as the exciting field,
which is a vertically polarized plane wave. In Figure 2 the
scattering cross section for a perfectly conducting sphere of
radius a is depicted as a function of k0d. The explicit data of
the example are given in the caption.

IX. CONCLUSIONS

By the use of the integral representation of the scattered
field, the solution to the complex electromagnetic scattering
problem has been solved. The solution is an extension of
the null field method, originally proposed by Peter Waterman,

to geometries with two planar interfaces. Similar geometries
have been addressed in the past, see e.g., [5], but the present
problem shows more complexity. The approach is well suited
to numerical implementation, and a numerical example shows
the usefulness of the method. Several ways of testing the
numerical are available, e.g., the optical theorem (appropriately
formulated) and the sum rule. All these verification show
excellent agreement.
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