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Abstract– The dependence among variables is one of 

natures that should be considered on the function optimiza-

tion problems. In general, the restriction of searching di-

mensions is said to be effective only when the function 
does not have the dependence among variables. However 

our previous studies have shown that the one-dimensional 

search can work well even when the function has the de-

pendence among variables. In this paper, we propose PSO 

with restricted searching dimensions and examine how our 

PSO has impacts on the dependence among variables. 

 

1. Introduction 

 

Optimization problem is to search the solution which 

minimizes the function under the constraint conditions. In 

case the evaluation function is an unknown multimodal 
function, it is very difficult to search the optimal solution 

and the searching may need enormous time. Therefore, the 

efficient searching is necessary for such problems. Heuris-

tics are well known as the efficient searching and it can 

search semi-optimal solutions instead of the optimal solu-

tion. Heuristics based on more abstract conception are 

called meta-heuristics which can be utilized broadly in 

various problems. PSO (Particle Swarm Optimization) [1] 

is a representative of them. 

PSO developed by J. Kennedy and R. C. Eberhart is an 

algorithm to search the optimal solution. Each particle in 
PSO moves considering the personal best position (PBP) 

and the global best position (GBP). At the beginning stage, 

particles are spread all over the solution space, where the 

global search is carried out. Particles converge gradually. 

This means that the global search turns into the local 

search. Since the update equations consist of only the ve-

locity and the position of each particle, this algorithm is 

simple and the calculation cost is very small. Therefore, 

PSO has been applied to various optimization problems in 

non-linear systems and many PSO models based on the 

original PSO [1] have been proposed. 

Function optimization problems are benchmark ones 
which are often used to evaluate the performance of PSO. 

In case of solving function optimization problems by 

swarm intelligence, the following three points should be 

considered: the dependence among variables, the number 

of local minima and the scale of coordinate systems [2]. 

Especially, we have paid attention to the dependence 

among variables. In general, the size of the solution space 

increases exponentially in proportion to the number of 

dimensions. Therefore, it is inefficient to search the whole 

solution space if the function is defined in the high dimen-

sional solution space and does not have the dependence 

among variables [3]. However, as far as we know, we 

have not found the studies on PSO considering both the 

dependence among variables and the restriction of search-
ing dimensions. 

In our previous work [4], we have proposed a PSO 

model. A part of particles in this model can search the so-

lution only in one dimension. Also, when the particles 

converge, they are re-initialized and the searching dimen-

sion is changed. We call these particles the one-

dimensional searching ones. From the results of numerical 

simulations we have found the following. When our PSO 

is applied to the function without the dependence among 

variables, the one-dimensional searching particles im-

prove the solution precision and reduce calculation cost in 

comparison with the original PSO [1]. This is a trivial re-
sult. On the other hand, when our PSO is applied to the 

function with the dependence among variables, it cannot 

find the optimal solution but can improve the solution 

precision. Therefore, these results mean that the one-

dimensional search is not always ineffective even if the 

function has the dependence among variables. 

In this paper, we propose a novel PSO with restricted 

searching dimensions. We investigate how m(= 1 or 2)-

dimensional search affects the solution precision and cal-

culation cost from the viewpoint of “the existence of de-

pendence among variables” and “the shape of function 
(i.e., unimodal / multimodal)”. As a result, we have con-

firmed that the restriction of searching dimensions works 

well for function optimization in spite of the existence of 

the dependence among variables. 
 

2. Original PSO 

 

The dynamics of original PSO [1] is given by 
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where vt
i,d and xt

i,d are the d-th dimensional velocity and 

position of the i-th particle at the t-th iteration respectively. 

The velocity vD and the position xD are restricted 

by the domains V and X. PBP
t
i

D and GBP
tD are the 

positions with the best evaluation value found by the i-th 

particle and the swarm until the t-th iteration. W(0,1] is 

an inertia weight coefficient. c1, c2[0,2] are acceleration 

coefficients. r1
t
i,d, r2

t
i,d[0,1] are uniform random numbers. 

Also, it is known that setting the parameters (i.e., W, c1, 

c2) to the following values is good for original PSO [6], 
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3. Proposed method 

 

We have confirmed in our previous work [4] that the 

one-dimensional search is effective even in optimizing the 
function with the dependence among variables. But, we 

have not sufficiently investigated the influence of the re-

striction of searching dimensions. Therefore in this paper, 

we propose PSO with restricted searching dimensions. 

Our proposed PSO searches the whole D-dimensional so-

lution space by the m-dimensional search (m  D).  
 

3.1 Simple design of m-dimensional search 

 

This section describes a simple design of the m-

dimensional search. Each particle can move only in one 

m-dimensional subspace selected from the whole D-

dimensional space. We call the dimensions given by the 
subspace ‘the restricted searching dimensions’. There are 

plural subspaces and the number is equal to the combina-

tions of restricted searching dimensions (i.e., DCm). All 

particles are divided into DCm groups. A group has Ngp 

particles. Each subspace is searched by only one group 

and all subspaces are searched by DCm groups simultane-

ously. 

The update equation of position x and velocity v is given 

by  
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Particles in each group have the local best position which 

is best position in a group (LBP
tD). In the restricted 

searching dimensions, the simple design updates the ve-

locity and the position by using LBP instead of GBP in 

Eq.(1). Each particle cannot move in the Dm dimension-
al subspace. The whole D-dimensional space consists of 

the m-dimensional subspace and the Dm dimensional 
subspace. Therefore, the simple design always fixes the 

position x at GBP in the Dm dimensional subspace. 
There is a problem in the m-dimensional search. Since 

the simple design searches all subspaces simultaneously, 

the number of all particles Nap equals to NgpDCm. There-
fore, as D and m increase, Nap becomes enormous number. 

By the above reason, it is essential to decrease the calcula-

tion cost by reducing Nap. We propose a method to reduce 

the calculation cost of the simple design in the next sec-

tion. 

 

3.2 Low cost design of m-dimensional search 

 

PSO with the simple design searches all subspaces sim-

ultaneously. But, our proposed PSO with the low cost de-

sign searches only a part of subspaces simultaneously. 

The low cost design re-selects subspaces which are 

searched simultaneously, and the design repeats the re-

selection of subspaces and the judgment of convergence 

of particles. Therefore, if enough re-selections are execut-

ed, it can mostly search all subspaces. We explain the low 

cost design used in our proposed PSO.  

First, we show how to re-select the subspaces. S sub-

spaces are selected at random from all subspaces (DCm) 

and are searched simultaneously. This re-selection is exe-

cuted when all particles in a group converge. Also, after 

the re-selection, the velocity and the position are initial-
ized by the domains V and X (re-initialization). Next, we 

describe how to judge the convergence. The convergence 

is measured by the velocity. That is to say, if all particles 

in a group satisfy vt
i,d   (= 103) in all dimensions.  

As mentioned above, the low cost design needs enough 

re-selections to search almost all subspaces. But, Eq.(5) 

does not always satisfy this demand. Therefore, to obtain 

the convergence frequently, we modify Eq.(5) as follows: 
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where tre i is the number of iterations after the re-selection. 

Eq.(7) surely makes particles converge until Tre iterations. 

 

4. Experiments 

 

4.1 Experimental conditions 

 

Simulations have been carried out to verify the effec-

tiveness of the restriction of searching dimensions by 

means of the function optimization problems shown in 
Table 1. 

Table 2 shows PSO models used in these experiments: 

the original PSO (PSO), the original PSO with the re-

initialization (PSO-R), PSO with the one-dimensional 

search using the simple design (PSO-1S), PSO with the 

one-dimensional search using the low cost design (PSO-

1LC), PSO with the two-dimensional search using the 

simple design (PSO-2S), and PSO with the two-

dimensional search using the low cost design (PSO-2LC). 

SN stands for the small number of particles and LN does 

for the large number of particles. Therefore, we can com-

pare the performances of these PSO models from the 
viewpoint of the swarm size. 

In these experiments, The number of search trials in 

each model is Ntri (=100) and the maximum number of it-

erations  in each trial is T (=10000). The successful condi-

tion is that f(GBP)   (=103). The evaluation items are 
the average of global best (GBave), the average number of 

iterations in successful trials (ITRave) and the success rate 

(SR). The other experimental conditions are shown in Ta-

ble 3. 
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Table 1 Function optimization problems. 

Function name 
Domain 
V and X 

Shape 

with/without 
dependence 

among 
variables 

Rosenbrock 
(f1) 

[-5,5]D unimodal with 

Rastrigin 

(f2) 
[-5,5]D multimodal without 

RotatedRastrigin 
(f3) 

[-5,5]D multimodal with 

Griewank 
(f4) 

[-512,512]D multimodal with 

 

Table 2 PSO models. 

 Nap Ngp # of subspace 

PSO(SN) 150 --- --- 

PSO-R(SN) 150 --- --- 

PSO-1LC(SN) 150 5 30(=S) 

PSO-2LC(SN) 150 5 30(=S) 

PSO(LN) 2175 --- --- 

PSO-R(LN) 2175 --- --- 

PSO-1S(LN) 2160 72 30C1 

PSO-2S(LN) 2175 5 30C2 

 

Table 3 Experimental conditions. 

Ntri 100 T 10000 

D 30 Tre 1000 

S 30 m 1 / 2 

 103
  103 

W 0.729 c1, c2 1.49445 

 

4.2 Results 

 

We have confirmed the following from the experimental 

results shown in Tables 4-7. 

- The restriction of searching dimensions improves PSO 

in all functions except f4. Therefore, it is effective in 
spite of the existence of dependence among variables. 

- PSO-2LC can tend to search better GBave than PSO-1LC. 

- Although particles of the simple design (SD) are 15 

times larger than those of the low cost design (LCD), the 

difference between their solution precisions is small. 

Moreover, if NapITRave is regarded as the calculation 
cost, LCD can cut it down drastically. Therefore, we es-

timate that LCD is more effective than SD. 

- In case of f4 PSO-R had the best result. We think that it 

is caused by the shape of function. When we see f4 

roughly it looks like unimodal. But, when we see f4 

around the optimal solution finely, it is a multimodal 

function with the dependence among variables. Therefore, 
since PSO-R can repeatedly search around the optimal 

solution by re-initialization, we think that it is more ef-

fective than the other PSO models. 

5. Conclusions 

 

In this paper, we have proposed PSO with restricted 

searching dimensions. We have confirmed that the re-

striction of searching dimensions works well for the func-

tion optimization in spite of the existence of the depend-

ence among variables. Moreover, the low cost design of 

the m-dimensional search can cut down the calculation 

cost. In the future, we will research the capacity of PSO 

with restricted searching dimensions, when the number of 

searching dimensions (m) is larger than two. 
 

Acknowledgments 

 

 This work was supported by JSPS KAKENHI Grant 

Number 24500179. 

 

References 

 

[1] J.Kennedy and R.C Eberhart, “Particle Swarm Optimi-

zation,” Proc. IEEE ICNN, pp.1942-1948, 1995. 

[2] I. Ono, M. Yamamura and H. Kita, “Real-Coded Ge-
netic Algorithms and Their Applications”, Journal of Jap-

anese Society for Artificial Intelligence, Vol.15, no.2, 

pp.259-266, 2000. (in Japanese) 

[3] I. Ono, H. Takeichi, N. Mizuguchi and N. Ono, “A Re-

al-Coded Genetic Algorithm Taking Account of Epistasis 

among Parameters and Its Performance Evaluation,” Proc. 

of Fuzzy, Artificial Intelligence, Neural Networks and 

Computational Intelligence (FAN) Symposium, Vol.12, 

pp.415-420, 2002. (in Japanese) 

[4] Y. Itaki, T. Kamio, H. Hujisaka, K. Haeiwa, “Diverse 

Re-initializing Methods for Convergent Particles in PSO,” 
Proc. of the 25th Workshop on Circuits and Systems, 

pp.275-280, July 2012. (in Japanese) 

[5] T. Kamio, Y. Itaki, H. Fujisaka, K. Haeiwa, “Searching 

Ability of PSO with Non-Convergent Particles,” Proc. of 

NOLTA, pp.150-153, 2012. 

[6] M. Clerc and J. Kennedy, “The Particle Swarm Explo-

sion, Stability, and Convergence in a Multidimensional 

Complex Space,” IEEE Trans. Evolutionary Computation, 

Vol.6, no.1, pp.58-73, 2002. 

[7] O. Urflioglu, “Robust estimation of camera rotation, 

translation and focal length at high outlier rates,” Proc. of 

the First Canadian Conference on Computer and Robot 
Vision, pp.464-471, 2004. 

 

 

- 250 -



   

Table 4 RosenBrock (f1) (Ntri=100, T=10000, D=30). 

  PSO PSO-R PSO-1S PSO-2S PSO-1LC PSO-2LC 

SN 

GBave 3.35E+02 2.03E+01 --- --- 1.28E+00 4.29E-01 

ITRave 5.69E+03 --- --- --- 3.84E+03 4.51E+03 

SR() 8 0 --- --- 20 25 

LN 

GBave 1.10E+02 1.49E+01 1.20E-03 2.93E-06 --- --- 

ITRave 8.11E+03 --- 5.19E+03 3.55E+03 --- --- 

SR() 11 0 99 100 --- --- 

 
Table 5 Rastrigin (f2) (Ntri =100, T=10000, D=30). 

  PSO PSO-R PSO-1S PSO-2S PSO-1LC PSO-2LC 

SN 

GBave 1.52E+02 9.34E+01 --- --- 1.53E-13 1.10E-13 

ITRave --- --- --- --- 4.02E+02 5.35E+02 

SR() 0 0 --- --- 100 100 

LN 

GBave 1.02E+02 6.63E+01 2.05E-13 5.00E-14 --- --- 

ITRave --- --- 4.66E+01 8.37E+01 --- --- 

SR() 0 0 100 100 --- --- 

 
Table 6 RotatedRastrign (f3) (Ntri =100, T=10000, D=30). 

  PSO PSO-R PSO-1S PSO-2S PSO-1LC PSO-2LC 

SN 

GBave 3.25E+02 2.28E+02 --- --- 1.03E+02 7.69E+01 

ITRave --- --- --- --- --- --- 

SR() 0 0 --- --- 0 0 

LN 

GBave 2.19E+02 1.82E+02 1.02E+02 7.76E+01 --- --- 

ITRave --- --- --- --- --- --- 

SR() 0 0 0 0 --- --- 

 
Table 7 Griewank (f4) (Ntri =100, T=10000, D=30). 

  PSO PSO-R PSO-1S PSO-2S PSO-1LC PSO-2LC 

SN 

GBave 1.12E+01 1.25E-04 --- --- 1.50E-02 7.31E-03 

ITRave 2.66E+02 1.13E+03 --- --- 9.04E+01 4.12E+03 

SR() 52 100 --- --- 47 72 

LN 

GBave 1.03E-02 1.11E-17 3.72E-02 3.70E-04 --- --- 

ITRave 5.26E+02 5.23E+02 5.38E+02 1.81E+02 --- --- 

SR() 59 100 30 100 --- --- 
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