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Abstract—Blind source separation (BSS) is a technique
for recovering an original source signal from mixing sig-
nals without the aid of information of the source signal. In
this study, we consider the case where the original signals
are nonlinearly mixed. In order to solve such problem, we
apply a radial basis function (RBF) network to the non-
linear BSS system. The inverse mapping of the nonlinear
mixture system is approximated by the RBF network. For
the system to be able to approximate the inverse mapping, it
is necessary to learn the parameter of the RBF network. We
suppose the original source signals are independent. In this
case, if the mixture signals can be separated, the higher or-
der cross-moment of the output signals are decreased. Par-
ticle swarm optimization is used for the learning algorithm.
By using a numerical simulation, we conform the perfor-
mance of the signal separation ability of the proposed sys-
tem. Simulation results indicate that the proposed approach
has good performance.

1. Introduction

Blind source separation (BSS) is a technique for recov-
ering an original source signal from mixing signals without
the aid of information of the source signal. Almost of the
BSS are realized by using an independent component anal-
ysis (ICA) method[1]. The ICA supposes that each signal
is independent and the signal has non-Gaussianity property.
The BSS technique is applied to the sound signal process-
ing, EEG, MEG[2], and so on.

In general, the BSS supposes that the mixture signal is
composed with a linear combination of unknown indepen-
dent signals. However, we can consider the nonlinear mix-
ture signal case. Such problems are called as a nonlinear
BSS. There are some processing techniques to solve the
nonlinear BSS[3][4][5]. The gradient method is generally
applied to the learning procedure of these methods. On the
other hand, we apply a particle swarm optimization algo-
rithm to the learning algorithm of the nonlinear BSS by
using an RBF network.

2. Nonlinear mixing system

A nonlinear mixture model can be described as

x(t) = f(s(t)) (1)

where x(t) = (x1(t), · · · , xn(t))T is an observed signal vec-
tor, s(t) = (s1(t), · · · , sn(t))T is a source signal vector gen-
erated from an independent source signal, superscript T de-
notes the transposition, and f is unknown mixing function
mapped from Rn to Rn.

A nonlinear separating system can be written as

y(t) = g(x(t),θ) (2)

where y(t) = (y1(t), · · · , yn(t))T is a separated signal vector,
g is a separating function mapped from Rn to Rn, and θ is
a parameter vector of the separating function g.

The purpose of the nonlinear BSS is the searching of
the map g. A typical solution is the inverse of the mix-
ing function f(·). However, we cannot calculate the inverse
function because the mixing function is unknown. In or-
der to approximate the inverse function, the ICA algorithm
is one of the solutions. The ICA algorithm supposes each
source signal is independent. It is the problem of finding a
mapping g that is independent of the output signals y(t).

If the mapping is a linear transformation, the ICA can
solve the problem because it has the uniqueness of solu-
tions. On the other hand, the nonlinear mapping does not
identify if the solution space has a restriction[6]．

3. Radial Basis Function Network

Radial basis function (RBF) network approximates a
nonlinear mapping[7]. Therefore, the inverse mapping of
the nonlinear mixture system can be approximated by the
RBF network. In this paper, we consider the nonlinear BSS
system by using the RBF network. The RBF network con-
sists of three layers; an input layer, a hidden layer, and an
output layer. The unit of the hidden layer employs an RBF
unit. The output of the output layer is a linear combination
of the RBF units.

The RBF network is described by

yi = βi +

m∑
j=1

αi jK j(x), K j(x) = exp

 ||x − µ j||2

σ2
j

 (3)

where, K j(x) denotes a radial function and x represents
the distance from the origin. αi j is an weight coefficient
between the j-th radial function and the i-th output, and βi

is the i-th offset.
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(a) full connection (b) ring connection

Figure 1: Network structures

We can select K j(x) from some functions. In this paper,
we apply Gaussian function as the function K j(x). µ j de-
notes the j-th center vector, σ j is a parameter of the j-th
RBF expanse．

4. Particle Swarm Optimization

Particle swarm optimization (PSO) is one of the meta-
heuristic algorithms for optimization problems[8][9].

The dynamics of PSO algorithm is described as
vt+1

j = wvt
j + c1r1

(
pbestt

j − xt
j

)
+c2r2

(
lbestt

j − xt
j

)
xt+1

j = xt
j + v

t+1
j

(4)

xt
j denotes a location vector of the j-th particle on the t-th

iteration in the N-dimensional space, and vt
j denotes a ve-

locity vector of the j-th particle on the t-th iteration. The
PSO has three parameters, w, c1, and c2. w is an iner-
tia weight coefficient, c1, and c2 are acceleration coeffi-
cients. r1, and r2 are two separately generated uniformly
distributed random numbers in the range [0, 1]. pbestt

j
means the location vector that gives the best value of the
evaluation function of the t-th iteration. lbestt

j means the
location vector that gives the best value of the evaluation
function on the t-th iteration in neighborhood of the j-th
particle. The neighborhood is determined by the network
topology of the particles. Figure 1 shows the two network
topologies. Figure 1(a) is full connection topology which
corresponds to the conventional PSO. Figure 1(b) is ring
connection topology. Comparing with these structures, the
full connection exhibits quick convergence. On the other
hand, the ring structure exhibits remarkable search perfor-
mance for multi-modal function[9].

5. Nonlinear BSS System

The our proposed nonlinear BSS system is shown in Fig.
2. The system consists of two parts; a whitening operation
and the RBF network. The parameters σ, µ, and α of the
RBF network are adjusted by using the PSO algorithm. β
is set as the average of the separation signal becomes 0.

The whitening operation is that the variance of the signal
becomes 1 and the covariance becomes 0. If the source sig-
nals are independent, the cross correlation is 0. Therefore,
the whitening operation is very important for the ICA.

Figure 2: The separation system

The cross moment is applied to evaluate the learning.
The cross moment measures the independence of the output
signals. We apply the following evaluation function based
on the cross moment.

C(y; θ) =
k∑

i1=1

· · ·
k∑

in=1

(
E
[
yi1

1 · · · y
in
n

]
− E
[
yi1

1

]
· · ·
[
yin

n

])2
(5)

where y; θ means the generated signal y depending on the
parameter vector θ. k denotes the maximum order for the
evaluation. If the stochastic variables are independent, the
value of Eq. (5) becomes 0.

6. Simulation

In this section, we carry out some numerical simulations
to separate the blind sources by using the proposed proce-
dure. In order to evaluate the separation ability, a mean
square error is applied. The mean square error is derived
from two signals, s(t) and y(t).

mse =
1
n

n∑
i=1

min
j

ei, j, ei, j = E[si(t)2] −
E[si(t)y j(t)]2

E[y j(t)2]
(6)

Example 1: Linear Mixture Case
We consider a two-channel linear mixture system. The

following linear mixture system is applied.

x(t) = B0s(t), B0 =

[
0.5 0.5
0.7 0.3

]
(7)

The source signals consist of a sinusoidal signal and a tri-
angle waveform; i.e., s(t) = [sin(2π90t), tri(t, τ)]T . where
tri(t, τ) denotes a periodic triangle wave with period τ =
0.002. Figure 3(a) illustrates the source signals s(t), and
Fig. 3(b) illustrates the mixture signals x(t).

In order to compare the performance, we carry out the
numerical simulations by using the standard PSO method,
the Ring-PSO method and the steepest descent method.
The standard PSO has the full-connection structure. For
the numerical simulations, the same initial values are ap-
plied. The simulation conditions of the PSO method are
shown in Table 1. Moreover, the number of particles is 40.
Figures 3(c), 3(d) and 3(e) show the signals separated by
the standard PSO, the Ring-PSO and the steepest descent
method. The evaluation value and its mean squared error
of the signals s(t) and x(t) are shown in Table 2. The eval-
uation value and its mean squared error at each simulation

- 245 -



s1

s2

0.00 0.01 0.02 0.03 0.04 0.05

t[sec]

(a) Original signals s(t)

x1

x2

0.00 0.01 0.02 0.03 0.04 0.05

t[sec]

(b) Mixed signals x(t)

y1

y2

0.00 0.01 0.02 0.03 0.04 0.05

t[sec]
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(e) Separated signals y(t) by the steepest
descent method

Figure 3: The signals in linear mixture case

Table 1: Simulation parameters for linear mixture case

The number of signal 2
The number of hidden neuron 9

The number of maximum iteration 2000
The number of trial 50

The inertia weight coefficient w w = 0.7298
The acceleration coefficient c1, c2 c1 = c2 = 1.49

Table 2: Evaluation value and its mean square error in lin-
ear mixture case

fitness mse
The original signals s(t) 0.000 0
The mixed signals x(t) 0.089 0.129

Table 3: Simulation results in linear mixture case
fitness mse

average min average min
standard PSO 0.000 0.000 0.004 0.000

Ring-PSO 0.000 0.000 0.011 0.000
gradient method 20.36 0.000 0.163 0.000

result are shown in Table 3. In these cases, all trials are
success to separate the signals. These results indicate that
the proposed method has the ability to separate the linear
mixed signals.

Example 2: Nonlinear Mixture Case
Next, we consider a two-channel nonlinear mixture with

sigmoid function. The following nonlinear mixture system
is applied.

x(t) = B2 tanh (B1s(t)) (8)

B1 =

[
0.8 2.2
0.4 2.6

]
, B2 =

[
0.1 −0.9
0.7 0.3

]
(9)

We apply the following sinusoidal and rectangle wave-
form signals to the source signals; i.e., s(t) =[
sin(2π90t), sgn(sin(2π155t))

]T . By using such nonlinear
mixture system, the mixture signals x(t) are generated.
Figure 5(a) illustrates the source signals s(t), and Fig. 5(b)
illustrates the mixture signals x(t).

In order to compare the performance, we carry out the
numerical simulations by using the standard PSO method,
the Ring-PSO method and the steepest descent method.
These methods use the same initial value. The simula-
tion conditions of the PSO method are shown in Table 1.
Moreover, the number of particles is changed from 10 to
80 by 10 units. Figure 4 shows the relationship between the
evaluation function value and the number of particles. The
simulation results indicate that the search performance is
improved when the number of particles is increased. In ad-
dition, Figure 4 indicates that the Ring-PSO exhibits small
evaluation value. Figures 5(c), 5(d) and 5(e) show the sep-
arate signals by the standard PSO, the Ring-PSO and the
steepest descent method. These are the result of the case
of 40 particles. The evaluation value and its mean squared
error of the signals s(t) and x(t) are shown in Table 4. The
evaluation value and its mean squared error of each simu-
lation results are shown in Table 5. These results indicate
that the evaluation value of the Ring-PSO method is small
comparing with the steepest descent method. Therefore,
the Ring-PSO method exhibits high performance.

7. Conclusions

In this paper, we proposed the nonlinear BSS algorithm
which consists with the RBF network. The parameters
of the RBF network are adjusted by the PSO algorithm.
Comparing with the conventional gradient method, we con-
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Figure 5: The signals in nonlinear mixture case: The number of particles was 40.

Table 4: Evaluation value and its mean square error in non-
linear mixture case

fitness mse
The original signals s(t) 0.000 0
The mixed signals x(t) 1.542 0.250

Table 5: Simulation results in nonlinear mixture case: The
number of particles was 40.

fitness mse
average min average min

standard PSO 0.096 0.000 0.172 0.021
Ring-PSO 0.050 0.000 0.201 0.011

gradient method 18.551 0.000 0.250 0.034

firmed the proposed algorithm exhibits higher performance
when the identical initial values are used. However, the
parameters used in this experiment are not optimal. Thus,
analysis of the parameters is required.

In addition, the system falls into local solutions fre-
quently in the numerical simulations. One of the reasons
why the system is caught in such local solution is the char-
acteristics of the evaluation function. Therefore, to improve
the evaluation function is one of our future problems.
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