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1. Introduction 
 
 For transient analysis of electromagnetic radiation and scattering, the time domain electric 
field integral equation (TD-EFIE) can be solved. For their numerical solution, the marching-on-in-time 
(MOT) [1] method can be applied, and TD-EFIE is solved in space by the method of moments (MoM). 
Although the MoM employing triangular surface patches is a versatile technique for variety EM 
problems, one of its major disadvantage is a high computational complexity which is proportional to 
the square of the number of surface unknowns, since the electromagnetic coupling between all 
discretized elements has to be considered. In recent years, several techniques have been proposed to 
decrease the computational complexity of the MOT method. The plane wave time domain (PWTD) 
algorithm [2] and time domain adaptive integral equation method (TD-AIM) [3] belong between the 
most popular ones. Although the computation complexity of these methods is lower than the classical 
MOT method, they are suitable mainly for modelling electrically large structures. 
 This paper is focused on the investigation of speeding up the classical MOT method for the 
TD-EFIE by the equivalent dipole moment (EDM) method. The EDM method has been applied for 
speeding up the MoM in the frequency domain [4], [5], however, no attempt has been done in the time 
domain. The own idea of the EDM method consists in computing the interaction between the source 
and testing function locations directly (the approximation of the radiated field by an infinitely small 
dipole with the equivalent moment) for a separation distance larger than the nominal value, without 
evaluating the double integral. It will be shown that the MOT method with the EDM method is faster 
than the classical one, even if it is not used for modelling electrically large structures. The 
investigation is limited to open perfectly electric conducting structures to avoid troubles with internal 
resonances. 
 
2. MOT Method with EDM Method for TD-EFIE 
 
 Let’s analyze the scattering of an open perfectly conducting structure illuminated by a 
transient electromagnetic wave. TD-EFIE is solved by the method of moments. The surface of the 
analyzed structure is approximated by planar triangular patches, and the RWG function [6] is used to 
expand the spatial variation of the electric current. In time, the TD-EFIE is approximated by central 
finite differences. The goal is to find the surface current due to the incident field. After several steps, 
the resultant implicit MOT scheme can be written in the following matrix form [1] 
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where [λmn] denotes a matrix of time invariant coefficients, [Im(ti)] is a column vector of the unknown 
current coefficients at time ti, [βm(ti)] is a column vector related to the incident field Vm(ti-1/2) located at 
m-the testing function, and the coefficient χmn(ti) depending on the location of the m-th testing and n-th 
source function and the known current coefficients from time t0 to ti-1, Δt is the length of the time step. 
The detailed derivation is given in [1].  



 If the size of triangles for approximating the analyzed structure is sufficiently small, the fields 
radiated due to the current on a triangle pair may be approximated by radiation of an infinitely small 
dipole with an equivalent moment, beyond the nominal value R0 [4]. The radiation of the infinitely 
small dipole [6] after several steps and the transformation to the time domain can be described 
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where I0 is the current on the infinitely small dipole, η is the intrinsic impedance of the medium, and c 
is the velocity of the wave propagation in that space, R=|r-r’| is the distance between the observation 
point r and the position of the infinitely small dipole r’, R/)'(ˆ rrr −= is the unit vector, and mn is the 
equivalent moment which can be expressed for the RWG function 
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where the ln is the length of the n-th common edge of the triangle pair Tn

± and the rn
c± is the position 

vector of the centroid of Tn
±. To speed up the scheme (1), let’s approximate the contribution of the 

current at the n-th source function to the m-testing function by an infinitely small dipole (2) with the 
equivalent moment. After substituting R=Rmn=|rm-rn|, where the rm and rn are the position vectors of 
the centre of the m-the and n-th edge, respectively, and mnnmmn R/)(ˆˆ rrrr −== to (2), after the 
discretization of (2) in time in the same way as the scheme (1), and, finally, after the testing procedure 
we can write for the coefficient χmn(ti) 
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Although the expression (2) for the radiation of the infinitely small dipole is valid at arbitrary distance 
from the dipole, the coefficient χmn(ti) can be computed for the implicit MOT scheme (1) according to 
(4) only if the distance between the centre of the m-th and n-th edge is larger, than the nominal value 
R0. If this condition is not met, the approximation (2) cannot be used, and the coefficient χmn(ti) have 
to be computed in the classical way.  
 
3. Investigation of MOT Method with EDM Method for TD-EFIE 
 
 To meet the requirement, that the size of triangles has to be sufficiently small for approxi-
mation of the body of the analyzed structure in the time domain, we have to compare the size of all 
triangles with the wavelength λ(fmax) at the maximum frequency fmax of the important part of the 
spectrum of the excitation pulse. Thus, the requirement can be met if the length of all triangle edges 
much smaller than λ(fmax). Thus, for our investigation, we choose the average edge length of triangles 
comparable to 0.1λ(fmax). 
 Let’s firstly investigate how the MOT scheme (1) may be sensitive to small change of its 
coefficients. The equation (1) represents linear invariant discrete system, thus, we can transform it to 
the Z-domain and compute the condition number of this system for different structures, since it is 
known [7] that the desired sensitivity is proportional to the condition number of the system matrix. We 



have carried out extensive numerical experiments to compute the condition number for different struc-
tures (placed in free space) which were discretized to the frequency f= 300 MHz (λ= 1 m) with the 
maximum edge lengths given in the first paragraph. Here, the results for three structures, the strip (2 m 
x 0.08 m), the square plates (1 m x 1 m), and the rectangular plate (2 m x 1 m), are depicted in Fig. 1. 
It is seen that the scheme (1) is poorly conditioned at low frequencies, so it is very sensitive to change 
of the coefficient χmn(ti). Thus, the MOT scheme (1) with EDM method cannot be used if the ratio of 
the maximum and minimum frequency of the important part of the spectrum of the excitation pulse is 
high. According to our investigation, the ratio should not exceed 4 for the discretization criterion.  

Let’s focus our attention on the accuracy of the approximation of the coefficient χmn(ti) in (1) 
by (4), and than on the determination of the nominal value R0. The accuracy investigation is carried 
out on the analysis of the strip with the dimensions 2 m x 0.08 m. The body of the strip is modelled 
with respect the frequency f= 300 MHz by 44 patches to meet the discretization criterion. After the 
transformation of χmn(ti) to the Z-domain, firstly as it is defined for the scheme (1), and secondly by its 
approximation (4), the magnitude of a relative error can be obtained for the frequency f= 300 MHz 
depending on the distance between the centre of m-th and n-th edge for the different lengths of the 
time step (Fig. 2a). It is seen that for small distances, the relative error is high, however, from a certain 
distance it is small, but not negligible. Further, this error depends on the length of the time step (Rmin is 
the minimum distance between any two centres of triangular patches). Since this error is not negligible, 
and depends on the length of the time step, the nominal value R0 cannot be determined from such kind 
of investigation. Thus, we have to proceed in a different way, directly in the time domain. We have 
carried out extensive numerical experiments on modelling different structures and compared the 
transient responses obtained by the MOT scheme (1), and by this scheme with the EDM 
approximation (4) to find a relative error of those responses lower than 3 %. It was observed, that the 
nominal value R0 depends on the length of the time step, as it was expected, but even on the ratio of 
the maximum distance between any two centres of triangular patches Rmax and the wavelength λ(fmax). 
The normalized nominal values R0 are depicted in Fig. 2b. 

To demonstrate the efficiency of the scheme (1) with the EDM method, let’s illuminate the 
strip (2 m x 0.08 m; 44 triangular patches; Rmax= 1.94 m), the square plate (1 m x 1 m; 264 triangular 
patches; Rmax= 1.33 m), and the rectangular plate (2 m x 1 m, 484 triangular patches; Rmax= 2.15 m), all 
structures are placed in a xy plane, by a harmonic plane wave modulated by Gaussian pulse [1] with 
the parameters: zkxE ˆˆ,LM8LM,2.7,ˆ120 00 −==== ctTπ , and the frequency of the harmonic signal 
is 187.5 MHz. The bandwidth of this wave is 225 MHz. The length of the time step is Δt=1.5*Rmin/c. 
The nominal distances were chosen with the help of Fig. 2b: R0= 1 m for the strip, R0= 0.8 m for the 
square plate, and R0= 1.05 m for the rectangular plate. Modelling these structures by the MOT scheme 
(1) with the EDM method saved 17 % of time for the strip, 10 % of time for the square plate, and 20 % 
of time for the rectangular plate in comparison to the classical MOT scheme. More time could be 
saved for a smaller length of the time step. The transient responses of the current at the centre of the 
rectangular plate obtained by both approaches are depicted in Fig. 3. The agreement is very good. 

 
4. Conclusion 
  

Although the presented scheme with the EDM approximation can save computational time in 
comparison to the classical one, its using is limited to the relative “narrow band” of the excitation 
pulse due to high sensitivity of the classical scheme to small changes of its coefficients. To decrease 
its sensitivity, a precondition procedure can be used. Now, we work on the MOT method with EDM 
method for the time domain combined field integral equation. 
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Figure 1: Dependence of condition number on frequency for different structures.  
 

 
 

Figure 2: a) Relative error of approximation (4) depending on distance between centre of m-th and n-th 
edge, and b) normalized nominal value. 

 

 
 

Figure 3: a) Current response at centre of rectangular plate (2 m x 1 m), and b) its enlarged detail.  
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