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Abstract—In this paper we propose a novel Optimiza-
tion method called Optimizer using Swarm of Chaotic Dy-
namical Particles. Our proposed method is based on parti-
cles which follow chaotic dynamics. The chaotic dynamics
makes the particle complex motion by stretching and hold-
ing mechanism even tough the dynamics does not contain
any stochastic elements. A swarm consists of the particles
which share the information of their own position which is
candidate solution like Particle Swarm Optimization(PSO).
By the particle’s complex behavior and sharing information
mechanism, our proposed method has ability to search op-
timum solution. Our proposed method does not contain
any stochastic elements and has only 3 system parame-
ters, therefor, it is easy to implement the algorithm, to an-
alyze particle dynamics and to design system parameters.
We compared our proposed method with other determinis-
tic PSO and conventional PSO for well-known benchmark
functions and proposed method shown better search ability
in almost all of situation.

1. introduction

Particle Swarm Optimization (PSO) is a evolutionary
computation method developed by Kennedy and Eberhart
[1]. The method optimizes an object function using pop-
ulation of particles which is based on social behavior like
birds flock and fish school. In recent years PSO is studied
because of their simple concept and efficient performance.

The particles updates their position and velocity at each
time step. The particle’s position which denotes a coordi-
nates of a candidate solution is evaluated by an object func-
tion. The position is calculated by the velocity toward the
best position in own searching history and toward the best
position in all particle’s searching history. The velocity is
calculated with stochastic terms.

The stochastic terms are important factor because they
cause particle’s variety motion which helps to escape from
local best position and to find an optimum solution. How-
ever, the stochastic terms also make difficult to analyze par-
ticle’s dynamics.

In order to improve searching ability, analyzing parti-
cle’s behavior is an important topic. Clerc and Kennedy
proposed a deterministic PSO method, called simple PSO
[2]. simple PSO is removed the stochastic terms from PSO
to analyze particle’s trajectory easily. Comparing simple
PSO and PSO, however, PSO shows much better searching
ability than simple PSO.

Shindo and Jin’no also proposed deterministic PSO
called RDPSO which is implemented re-acceleration par-
ticle’s velocity mechanism with simple PSO [3]. RDPSO
has five system parameters. Three of them are needed for
the re-acceleration mechanism and others are for simple
PSO dynamics. RDPSO makes their particle’s behavior
variety than simple PSO’s one by the additional mecha-
nism. RDPSO shown better searching ability than simple
PSO, however, the performance of PSO is still better than
RDPSO [3].

In this paper, we propose novel optimization method us-
ing swam of particles which follow chaotic dynamics. In
the swarm, the particles share the searching experience like
PSO. We are concentrating on implementation an optimiza-
tion method which is able to theoretically analyze particle’s
behavior and denotes superior performance than other de-
terministic PSOs. In order to develop our propose method,
we focused on three features of chaotic dynamics.

First of all, chaotic dynamics causes complex phenom-
ena. Following the chaotic dynamics, particles have vari-
ety motion with only three system parameters. It is said
that proposed method has an ability which helps for parti-
cles leaving local beset position and searching an solution
without any additional mechanism.

Second, size of chaotic attractor is controllable. The size
of chaotic attractor denotes particle’s searching range. We
designed that the size of attractor depends on own search-
ing experience. The particle whose best position is far away
from swarm’s best position roughly searches an optimal so-
lution in large area. Likewise, The particle whose best po-
sition is near by swarm’s best position searches an optimal
solution in narrow area with high density.

Third, chaotic dynamics does not contain any stochastic
terms. Therefore, in proposed method, particle’s behavior
is observed in deterministic system. It is helpful for analyz-
ing particle’s behavior and for theoretical designing system
parameters.

The proposed method is described in Sec. 2. Experimen-
tal results for four benchmark functions are shown In Sec.
3. Proposed method was compared with other determin-
istic PSOs and it shown effective performance than other
deterministic PSOs. Proposed method was also compared
with conventional PSO and it denoted superior searching
ability in multimodal functions.
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2. Optimizer using Swam of Chaotic Dynamical Parti-
cles

2.1. Particle’s information

Our method searches an optimal solution using swam
which contains particles. Every particles has position, ve-
locity and a point which is center point of their search-
ing. At each time step, the particle’s position is updated
by chaotic dynamics described in Sec. 2.3. Following the
dynamics, the particle behaves like hovering around own
center point. The particle’s searching center point is also
updated by the dynamics which is described in Sec. 2.2.

In N-dimensional space, these elements of variables vec-
tor of i-th particle are described as following:

x;(t) {xi1(0), x2(0), ..., xin(®)}, ()
vi(t) = (@), va@®), ..., vin(D}, ()
fpit) = {fpa®, fro®, ..., foin®}. (3

Every particles have own evaluated value given by an
object function f. i-th particle has a N-dimensional vector
pbest;. pbest; is denoted particle’s position which shows
best evaluated value in his searching history. The swarm
has a N-dimensional vector gbest. gbest is also denoted
particle’s position which shows best evaluated value in all
particle’s searching history.

2.2. Dynamics of searching center point

The fpi(¢) is updated by pbest; and gbest each time
step as following:

fpi(t +1) = fpi(t) + c{(pbest; — fpi(1))
+(gbest — fpi(1))}, “4)

where c is positive constants. fp;(0) is set to x;(0). The
parameter c is set to the range [0, 1] to guarantee that f p;(¢)
converges on %(pbest,- + gbest) in sufficiently long time.

2.3. Particle’s chaotic dynamics

The particles follows chaotic dynamics. To describe this
dynamics simply, i-th particle’s position which is linearly
mapped by fp;(t) is denoted y;(¢) as following:

Yi(t) = xi(t) - fpi(2). &)

The i-th particle’s position and velocity for j-th element are
updated by

yijt+1)
V,‘j([ +1)

cosf sind H yij(®)

- [—sin@ cosf vij(?) }’ ©)

where R is a damping parameter and 6 is a degree parame-
ter.

Two thresholds, y:1;; and Y., are considered as fol-
lowing. If (y;;(#) < Ymii;) and (v;j(f) > 0) are satisfied,
status (y;;(2), vij(£)) jumps to (2ym1i; — yij(1), 0). And if

(vij(®) > ymaij) and (v;;(r) = 0) are satisfied, (y;;(z), vi;(?))
jumps to (2Zyyi; — yij(1), 0). Y1 is set in the negative di-
rection from the origin and the value |y;;1;;| is the average of
gbest; and pbest;;. yupij is also set in the positive direction
and the value is Myy1;;, where M is (1 — R7)L.

Figure 1 and 2 shows typical particle’s behavior, where
we assume that yy;,1;; is constant. The particle follows this
dynamics, and exhibits chaotic attracter as shown in Fig.
1. Focusing on the particle’s position, y;;(f), the chaotic
attractor produces time series as shown in Fig. 2. Using
this time series, the particles search optimum solution.

Uij
A

r1.1, deg52, yth1= -3, yth2= 5.7265

Figure 1: A particle’s trajectory, 8 = 52[deg], R =
1.1, ythy = =3, drawn 29000 to 30000 iteration.

2
Yij O
-2
-4
58000 29500 30000
iteration

Figure 2: A time-serias of particle’s positon, 8 = 52[deg],
R = 1.1, yth; = -3, drawn 29000 to 30000 iteration.

The size of chaotic attractor is designed as variable de-
pending on y;1;;. Size of attractors exhibit search range
of particles from fp;;(f). the particle’s search area adapts
depend on the length between pbest;; and gbest;. This
means that a particle having an element, pbest;;, which is
far away from gbest;, roughly searches optimum solution
around fp;;(¢) and a particle having near pbest;; searches
with high density, respectively.
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2.4. Algorithm of proposed method

The algorithm of proposed method in pseudocode fol-
lows.

Initialize Population with random values
Initialize gbest, pbest, and fp
repeat
Evaluate all populations
if better position is found then
Update pbest and gbest if necesarry
Calculate y;p1 and ysp»
end if
for i = 1 to Number of particles do
for j = 1 to Dimension do
update fp;;
Yij = Xij — fpij
update y;; and v;;
Xij = Yij + fpij
end for
end for
until termination criterion is met

3. Experimental Results

3.1. Experiment condition

The performance of proposed method was compared
with conventional PSO [1] and other deterministic PSO,
simple PSO [2] and RDPSO [3], by well known benchmark
functions as shown in table 1.

PSO’s parameters were set to w = 0.729 and cl =
c2 = 1.49445 [4]. For simple PSO, w = 0.9025 and
¥ = 2.2646 were selected [3]. RDPSO’s parameters were
$et t0 Vhoundary = 1078, @ = 0.5, w = 0.9025 and ¥ = 2.2646
[3]. In RDPSO, XscarchRange Was same as Initial x Range
in table 1. For proposed method, R = 1.1, 8 = 52[deg],
¢ = 0.94 were selected by simulating with some patterns of
parameters.

To be fair, in all methods, particle’s positions were ini-
tialized to a set of coordinates at each independent runs.
The set of coordinates is generated by uniformed distribu-
tion with Initial x Range in table 1. We compared methods
for 30 dimensional object functions using 20 particles. So
the set of coordinates contained 20 X 30 elements. 100 sets
of coordinates were provided for 100 independent runs.

3.2. Results

Table 2 shows experimental results, averaged best eval-
uations at the end of iteration and the standard deviations
with blanket by 100 independent runs using 20 populations.
The best averaged evaluated value for each iteration is de-
noted with bold.

For unimodal function, Sphere, PSO shown best perfor-
mance in all methods. Our proposed method shown better
performance comparing with simple PSO and RDPSO.

For multimodal functions, proposed method performed
better than other deterministic PSOs. Proposed method
also performed better than PSO without Rosenbrock at
3000 iteration and Griewank at 1000 iteration.

In table 2, it seems that even though proposed method
does not contain stochastic terms, our proposed method
shown better performance for almost all of condition to
Rosenbrock, Rastrigin and Griewank function comparing
PSO. This result suggests that particle’s variety of behavior
operated chaotic dynamics has superior ability in optimizer
which solves multimodal functions.

4. Conclusion

In this paper, we proposed a novel optimization method
using swarm of chaotic dynamical particles.

The proposed method denoted better performance than
PSO in almost all situation even tough our method is deter-
ministic system. In proposed method, the particle’s variety
motion is given by chaotic dynamics without any additional
mechanism. Using a chaotic dynamics’s feature which is
that size of chaotic attractor is controllable, our method ef-
fectively searches an optimal solution depending on each
particle’s searching experience.

The proposed method is easy to implement the algo-
rithm and to analyze particle dynamics because the method
has only three system parameters and does not contain any
stochastic terms. Analyzing particle’s behavior and theo-
retical designing system parameters are future topics.
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Table 1: Benchmark functions

f Function Initial x Range
Sphere fsx)=3N 2 +20
Rosenbrock fro(x) = ¥ 100 ((xf+ L=+ (- x,-)z) +10
Rastrigin Jra(x) = Zf\il(xl.z — 10cos(2nx;) + 10) +5.12
Griewank fo(x) = Wloo >, xi2 -T1 cos(%) +300

Table 2: Experimental results for 30 dimensional functions with 20 populations.
Each averaged best evaluated value is calculated with 100 independent runs. The values with bold denote the best perfor-
mance_of evaluation for each iteration.

Function iteration PSO simple PSO RDPSO OSCDP
1.252 x 10~5 188.7 7182 2.491 x 1072
1000 (1212 x 107 (67.39) (23.54) (9.229 x 1072)
3.848 x 10714 188.7 5.622 2.309 x 1077
Sphere 2000 (2.704 x 10’13) (67.39) (23.26) (7.703 x 1077)
1.032 x 1074 188.7 5518 3.579 x 10712
3000 (8.183 x 10724 (67.39) (23.22) (1.851 x 107'1)
45.41 3.430 x 10* 483.7 36.13
1000 (37.58) (3.580 x 10%) (1618) (24.94)
31.74 3.430 % 10* 389.1 29.20
Rosenbrock 2000 (28.89) (3.580 x 10%) (1597) (15.01)
24.97 3.430 x 10* 365.7 26.86
3000 (24.98) (3.580 x 10%) (1591) (8.783)
74.71 170.8 76.99 70.87
1000 (20.14) (25.13) (24.29) (18.75)
77.75 170.8 66.43 59.95
Rastrigin 2000 (20.06) (25.13) (22.00) (17.23)
71.12 170.8 62.72 59.76
3000 (17.17) (25.13) (21.41) (17.20)
0.08713 11.16 1.960 0.1829
1000 (0.1627) (3.989) (1.121) (0.151)
0.04534 11.16 1.149 0.02181
Griewank 2000 (0.05466) (3.989) (0.9553) (0.02427)
0.06223 11.16 0.9103 0.02082
3000 (0.07212) (3.989) (1.003) (0.02334)
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