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Abstract— Adaptive beamforming with Hamiltonian algorithm is 
proposed for ESPAR antenna. Hamilton’s equations describing 
the motion of particles are used to solve optimization problems. 
In an application of Hamiltonian algorithm to ESPAR antenna, 
the cost function for beamforming is considered as the potential 
energy.  Although the kinetic energy, acted by momentums, does 
not appear in the issue of the beamforming, the momentums help 
to provide a more possibility to search the global minimum of the 
cost function. It is shown that ESPAR antenna with Hamiltonian 
algorithm can steer its beam and null automatically. 
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I. INTRODUCTION 
In wireless communications systems, interference becomes 

a dominant factor in limiting quality and capacity. The 
adaptive array antenna has gained much attention over the last 
few years for its ability to increase the performance of 
wireless systems by effectively suppressing interferences.  

It is well known that nearly all-existing antenna array 
techniques require one receiver chain per branch of antenna. 
Analog adaptive beamformers, e.g., electronically steerable 
parasitic array radiator (ESPAR) antenna [1] [2], has only a 
single-port output. It requires little hardware thus low power 
consumption, so has shown the potential for application to 
wireless communications systems. 

The (M+1)-element ESPAR antenna has only an active 
radiator, the central element, connected to the receiver (see 
Fig. 1). The remaining M elements are parasitic, and are 
loaded with reactances. The antenna pattern is formed 
according to the values of the loaded reactances.  

Because of the configuration of ESPAR antenna, we face 
the following three difficulties [1] [2] in the development of 
optimum algorithms: a) Signals on all elements cannot be 
observed. Only the single-port output can be observed. b) RF 
currents on the elements are not independent but mutually 
coupled with each other. c) The single-port output is a highly 
nonlinear function of the variable reactances that includes the 
admittance matrix inverse. In addition, unlike digital 
beamforming antennas, conventional criteria such as MMSE 
(Minimum Mean Square Error) are useless for the 
optimization of ESPAR antenna, since the amplitude of the 
antenna output is difficult to be adjusted [2]. 

There have been developed several algorithms for adaptive 
beamforming of ESPAR antenna.  The gradient-based 
algorithm [2] [3], converges fast but sometimes unwillingly 
falls into a local minimum depending upon the initial values 

of reactances. On the other hand, randomized ones, such as 
the random search algorithm [4], tolerate local-minimum 
problems but are rather slow to reach the final goal. Ones 
based on the genetic concept seem to be deterministic at first 
glance, but they actually involve mutation in a random fashion 
to escape from local traps [5]. 
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Fig. 1 (M+1)-element ESPAR antenna and its adaptive beamforming. 

Hamiltonian algorithm [6] [7] intends to meet the two 
conflicting requirements, i.e. to be free from local problems, 
and to be deterministic. Hamiltonian algorithm originally 
stems from a heuristic idea with autonomous motion of mass 
in a friction-free potential space. The point of mass moves 
according to the law of energy conservation, i.e. kinetic 
energy plus potential energy keeps constant during the motion. 
In [8], Hamiltonian algorithm was applied to optimization 
design for ESPAR antenna to find optimal reactances.  

In this paper, we further investigate the application of 
Hamiltonian algorithm to ESPAR antenna. In contrast to the 
antenna design in [8], we here apply Hamiltonian algorithm to 
adaptive beamforming for ESPAR antenna. The adaptive 
beamforming of ESPAR antenna is a non-linear optimization 
problem. The adaptive beamforming is carried out by finding 
an optimal reactance vector such that a cost function for 
ESPAR beamforming is minimal. In our work, the cost 
function, a normalized mean squared error, is considered as 
the potential energy in Hamiltonian algorithm. Although the 
kinetic energy, acted by momentums in Hamiltonian 
algorithm, does not appear in the issue of antenna 
beamforming, the momentums play an important role to find 
an optimal reactance vector. In Hamiltonian algorithm, one of 
the momentums becomes larger when the cost function 
towards its local minimum, meanwhile the corresponding 
reactance gets a larger increment. This helps the cost function 
escape from the local minimum, thus provides a more 
possibility to search the global minimum. The simulations 
show that ESPAR antenna, with Hamiltonian algorithm, can 
steer its beam and null automatically. 
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II. SIGNAL MODEL OF ESPAR ANTENNA 
This section describes the structure and the signal model of 

ESPAR antenna [1] [2]. 

A. ESPAR Antenna 
In an (M+1)-element ESPAR antenna (see Fig. 1), the 0-th 

element is an active radiator located at the centre of a circular 
ground plane. It is a /4-length monopole (where  is the 
wavelength) and is excited from the bottom in a coaxial 
fashion. The remaining elements of /4-length monopoles are 
parasitic radiators surrounding the active radiator 
symmetrically, with the circle’s radius /4. Each of these 
elements is terminated by a variable reactance xm. The vector 
x=(x1, x2,…, xM) is called reactance vector. 

The reactance loaded in each of the parasitic element 
electronically adjusts its element length and makes the 
monopole element appear as a director or a reflector, as in the 
Yagi-Uda array antenna [9], depending on the negative or 
positive value of the reactance. The element appears as an 
effectively ‘shorter’ monopole (director) if a negative 
reactance is loaded, while a positive reactance provides an 
effectively ‘longer’ monopole (reflector). The action of these 
loaded reactances causes a change in radiation pattern [10]. 

B. Signal Model 
We now give a signal model of ESPAR antenna [1] [2]. 

Suppose there are a total number of Q signals )(tuq with 
DoAs q , ( Qq  , ,2 ,1 ). The output of ESPAR antenna is 

)()()()(
1

T tntuty
Q

q
qqaw   

where )( qa  is the steering vector, n(t) is noise, and the 
superscript T is the transpose of vector or matrix. The RF 
current vector w in elements is called equivalent weight vector, 
since it acts as a weight vector like conventional array antenna. 

The RF current vector is given by [1] [2] 
0

1)( uXZw sV  
where sV  is a constant, and T

0 )0 , ,0 ,1(u  . The diagonal 
matrix ) , , ,(diag 10 MjxjxZX   is called the reactance 
matrix, and  )1()1()( MMklzZ  is referred as to the impedance 

matrix, with klz expressing the mutual impedance between the 
elements k and l ( Mlk  ,0  ). Note that w, thus )(ty , is a 
non-linear function of the reactance vector x. 

III. HAMILTONIAN ALGORITHM FOR OPTIMIZATION 
In this section, after reviewing an M-particle problem, we 

describe Hamilton’s equations and Hamiltonian algorithm for 
optimization. 

A. M-Particle Problem and Newton’s Equations of Motion 
Conservative dynamical systems most often originate 

through application of Newton’s second law which describes 
the motion of a particle in an applied force field. In a classical 
M-particle system, several point masses are involved and the 

force acting on any one particle arises from the presence of 
neighboring particles or some external fields. 

Let the i-th particle be assigned a mass mi, an instantaneous 
position xi (with respect to some appropriate reference frame), 
and a velocity vi ( Mi ,,2,1 ). Let Fi represent the force 
acting on the particle i (due, for example, to interactions with 
the other particles). For the motion in Euclidean space R , (  > 
0), xi, vi, and Fi all in R  

We assume that the force can be obtained as the negative 
gradient of a potential energy function ),,,( 21 MU xxx with 
respect to the i-th particle position, i.e. 

i
i

U
x

F . 

The M particles move according to Newton’s equations [11] 

idt
d vxi     (1) 

ii dt
dm Fvi ,  Mi ,,2,1 .  (2) 

B. Hamilton’s Equations 
We now introduce a linear momentum defined by iii mvp . 

Then the kinetic energy in this particular system is written as   
M

i i

i
M m

K
1

2

21 2
1),,,( pppp .  (3) 

Hamiltonian function (or just the Hamiltonian) of the system 
is defined as the sum of potential energy U and kinetic energy 

).,,(),,(),,,,,( 1111 MMMM KUH ppxxppxx  (4) 
Appending M momentums ),,( 1 Mpp  extends the M-

dimensional positional space over Mxxx ,,, 21  to 2 M-
dimensional phase space over  

),,,,,,,( 2121 MM pppxxx . 
Thus it is easy and useful to generalize Newton’s equations 
(1) and (2) as [11] 

i

H
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d

p
xi ,    (5) 

i

i

x
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which are called Hamilton’s equations, and play the key role 
in dynamics. 

Furthermore, we observe that 
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The above observation tells us that the Hamiltonian is a 
constant E, which is called a total energy. It is obvious that 
Hamiltonian system is a conservation system of energy. 

C. Hamiltonian Algorithm for Optimization 
Let’s consider optimization problem with Hamiltonian 

algorithm. In the statement above, the M-particle problem is 
described in the -dimensional Euclidean space R . From now 
on, we consider the problem in a one-dimensional Euclidean 
space R , (  = 1) Thus xi and pi are rewritten as scalars xi, and 
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pi. Also, we assume that the mass of every particle is unity (mi 
=1) for simplicity. 

The purpose of an optimization problem is to find optimal 
values of augments such that a cost function is minimal. We 
will see below that Hamilton’s equations give a tool to solve 
the optimization problem. 

To map the M-dimensional optimization problem to an M-
particle dynamics system, it is direct that the M-dimensional 
arguments are considered as the instantaneous positions 

Mxx ,,1 , and the cost function as the potential energy 
),,( 1 MxxU .  By using (4) we rewrite (5) and (6) as 

i
i p

dt
dx     (7) 

i

i

x
U

dt
dp

 
 ,  Mi ,,2,1 .  (8) 

Equation (7) means that the incremental value of the 
instantaneous position xi is proportional to the value of pi. 
Equation (8) shows that updating the momentum makes the 
cost function U towards to its local minimum. When U is 
minimal, the kinetic energy K of (3) thus pi, is maximal since 
the Hamiltonian is a constant. The above observation tells us 
that the local minima of the cost function are given in the 
larger momentums, and but are easily escaped with the larger 
momentums since at the time the increments of positions are 
larger. This means that Hamiltonian algorithm is able to 
search a local minimum, but does not fall into the local 
minimum. In other word, the algorithm provides a more 
possibility to search the global minimum. 

D. Numerical Method of Hamiltonian Algorithm 
We now give the numerical method of Hamiltonian 

algorithm. Since the first-order derivative of a function can be 
approximated to a change of function, we have 

dttdxttxttx iii /)()()(  
dttdpttpttp iii /)()()( . 

By inserting (7) and (8) into above equations, we obtain 
)()()( tpttxttx iii   (9) 

)()()( tttpttp
ixii .  (10) 

where iMix
xtxtxUt /))(,),(()( 1 for compact reason. 

A discrete version of above equations could be obtained by 
taking samples of the solution at equally spaced points in time 
t0+n t, for  ,2 ,1n . Assume that this is done by a 
sequential iterative procedure: starting at t0, and given the 
initial value )( 0

0 txx ii , we compute the approximations of 
)( 0 tntxx i

n
i and )( 0 tntpp i

n
i  via (9) and (10). 

Therefore, the numerical computation of Hamiltonian 
algorithm is summarized, for  ,2 ,1n , as follows.  
  n

i
n
i

n
i ptxx 1  

n
ix

n
i

n
i tpp 1  ,  Mi ,,2,1  

with the initial values 0
ix  and 0

ip . Note that 0
ip  is determined 

by (3) and (4) for a given constant H(=E) and 0
ix , Mi ,,1 .  

IV. BEAMFORMING WITH HAMILTONIAN ALGORITHM 
We are ready to describe an application of Hamiltonian 

algorithm to an adaptive beamforming of ESPAR antenna. 
First, we give a cost function for ESPAR antenna 

beamforming. Let the error )()()( trtyt be defined as the 
difference between the actual response of ESPAR antenna y(t) 
and the reference signal r(t) (desired response). Let us turn to 
the measures as a mean squared error (MSE) or a normalized 
MSE (NMSE) of the output waveform y(t) relative to the 
desired waveform r(t) 

2* )()(E)]()([E),( trtyttryMSN  
21),(),( rgyNMSEryNMSE . 

Here E denotes a expectation operator, g is a complex scalar, 
and  

trtrtyty
trty

**

*

EE
E  

is a cross-correlation coefficient.  
Let the P-dimensional vector )(ny and )(nr to be the 

discrete-time samples of the output signal y(t) and reference 
signal r(t). The cost function employed as NMSE is thus 

)()()()(
|)()(|1)(1
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ry
 (11) 

where the superscript H is the conjugate transpose of matrix. 
Notice that )(ty , thus U, is a non-linear function of reactance 
vector x=[x1, x2,…, xM]. Also, for a given radio environment, 
the cross-correlation coefficient, thus U, varies from zero to 
unity as we control the reactance vector.  

It is well known that the cross-correlation coefficient 
represents the similarity of two signals, while the error 
represents the difference. For a given radio environment, the 
normalized cross correlation coefficient  , between the output 
signal y(t) and the reference signal r(t), varies over the range 
[0, 1], as the reactance vector is controlled. The interference 
signals in the output signal y(t) are suppressed when y(t) 
becomes similar to the reference signal r(t), regardless of their 
difference in amplitude. Employing the cross-correlation 
coefficient avoids the need for an extra amplitude control (e.g., 
automatic gain control) on y(t). For ESPAR antenna, this 
provides an effective solution to the difficulty of adjusting the 
amplitude of the output signal such that it equals the 
amplitude of the reference signal. 

Second, we describe the application of Hamiltonian 
algorithm to the beamforming of ESPAR antenna. We employ 
Hamiltonian algorithm to find the optimal reactance vector x 
such that the antenna can steer its beam for desired signal and 
its nulls to interference signals. A direct application of 
Hamiltonian algorithm to antenna beamforming is just to 
consider NMSE of (11) as the potential energy U in (4). We 
see that mapping an M-dimensional optimal problem to M-
particle problem in dynamic is simple and direct. 
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Although the kinetic energy, acted by momentums, does not 
appear in antenna beamforming, the momentums help us to 
search the global minimum, as stated in Section III-C. 

V. SIMULATIONS 
In our simulations, a 7-element (M=6) ESPAR antenna is 

employed. The signals )(tuq and reference signal r(t) are in 
binary phase shift keying (BPSK) modulation. The single-to-
noise power ratio is 20 dB. The power of interference signal is 
the same as the desired signal’s. The data block size for each 
calculation of NMSE in (11) is taken to be P=50. In this 
simulation, the number of symbols used for training is 

6105.310000)16(50)1( NMP  
because it is required (M+1) time to calculate the gradient 
values in (10) for i=1,2, …,M. 
Let’s first consider the case where there are two signals from 

different directions 24o and 195o. At the initial step, the value 
of each reactance is set to zero. After N=10000 iterations, we 
find the lowest value of the cost function. With the 
corresponding reactance vector   x = [-200  -119  236  67  57  
-122] , the beam is steered to 24o of the desired signal, while 
the deep null is formed towards the interference signal at 195o 
(see Fig. 2). The output signal-to-interference power ratio 
(SIR) of 40 dB is obtained. This verifies that Hamiltonian 
algorithm can steer null adaptively to interference.  
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Fig. 2  Adaptive array pattern for SNR=20 dB. DoA: 24o (desired) and 195o. 
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Fig. 3  Loci of xi-xj during the iterations.                                                           
Initial points marked by squares and optimal points marked by cycles. 

We now show in Fig. 3 the loci of xi-xj in above simulation. 
In the figures the initial points in iterations are marked by 
squares, and the optimal points are marked by cycles. For the 
desired signal at DoA 24o and the interference signal at DoA 
195o, according to the action of the loaded reactance discussed 
in Section II-A, the 1st and 2nd elements should act as 
directors, loaded by negative reactances, to form beam to the 
desired signal. The 4th and 5th elements may act as reflectors, 

loaded by positive reactances. Figure 3 illustrates that loci 
spread on a larger area, but seem to be limited over a good 
solution range. For example, we see from Fig. 3(a) that in the 
search area, the reactance x1 is frequently ranged over 
negative values while x4 over positive values, but do not fall 
into a local minimum. The same phenomenon can be observed 
in Fig. 3(b), in which the reactance x2 is frequently ranged 
over positive values, and the reactance x5 is over positive 
values. In addition, x3 and x6 are scatted over all the possible 
area (see Fig. 3(c)), since the 3rd and 6th elements may not 
behave directly to steer beam and null at 24o and 195o. The 
discussion above shows that Hamiltonian algorithm is free 
from local minima, and provides a more possibility to search 
the global minimum deterministically. It is known that the 
gradient-based algorithm sometimes unwillingly falls into a 
local minimum. The loci given by the random search 
algorithm is uniformly and randomly distributed on all the 
reactance space. 

VI. CONCLUSION 
We have proposed an adaptive beamforming of ESPAR 

antenna with Hamiltonian algorithm. We employ Hamiltonian 
algorithm as a tool to solve the non-linear optimization 
problem. In an application to ESPAR antenna, the cost 
function, i.e. the normalized mean squared error, is considered 
as the potential energy. The momentums do not appear in 
antenna beamforming, but help to provide a more possibility 
to search the global minimum. We have showed that ESPAR 
antenna with Hamiltonian algorithm can steer its beam and 
null automatically. 
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