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Abstract— In this paper, the time-domain pulse reflection from a 
dispersive dielectric half-space is investigated. The properties of 
a half-space are described in the frequency-domain by the Debye 
model, which is commonly used to capture the relaxation-based 
dispersive properties. Firstly, transient reflected pulses are 
analyzed using a time-domain convolution. Then, based on the 
analysis, the waveform parameters of reflected pulses are 
estimated, and the relationships between the waveform 
parameters and the properties of dispersive material and 
incident angles are discussed. Excellent agreement is obtained 
between our results and those in the literature, supporting the 
correctness and effectiveness of this work. 
Key words: transient analysis, pulse reflection, dispersive 
dielectric half-space, time-domain convolution, waveform 
parameter estimation. 

I. INTRODUCTION

The reflection of short duration electromagnetic pulses 
from dielectric media is of interest in the fields of 
electromagnetic compatibility (EMC) and antennas. Many 
kinds of media show relaxation-based dispersive properties. 
The two models commonly used to capture relaxation-based 
dispersive properties are the Debye [1] and Cole–Cole [2] 
models. For many types of materials including biological 
tissues, Cole–Cole models provide an excellent fit to 
experimental data over the entire measurement frequency 
range. However, because of the computational complexity of 
embedding a Cole–Cole dispersion model into numerical 
methods, a variety of Debye models that achieved both 
simplicity and accuracy were developed and applied. So far, 
the simpler one- and two-pole Debye equations with loss 
terms have been used to describe dielectric properties of 
building materials [3], circuit boards [4], ceramics [5] and 
biological tissues [6] [7].  

A typical approach to material characterization is to 
examine reflected electromagnetic pulses from the interface 
between free-space and the investigated material. It is 
therefore necessary to develop an efficient technique to 
analyze the transient reflection from a Debye material. 
Rothwell [8] worked out the time-domain reflection 
coefficients of a Debye half-space for both horizontal and 
vertical polarizations that involve exponential and modified 
Bessel functions and require convolution operations to 
evaluate. Very recently, we have developed an efficient 
method on the basis of the numerical inversion of the Laplace 
transform for calculation of time-domain surface impedance 

of a lossy half-space [9]. It is the purpose of this paper to 
develop a new technique for solving the impulse response of a 
Debye half-space without performing tedious and complicated 
mathematical manipulations. This technique leads to good 
accuracy, and has a simple algorithm, short calculation time, 
small required memory size, readily controlled error and wide 
range of applicability. The numerical results show excellent 
agreement with those in [8], validating the effectiveness of 
this technique. 

II. THEORY ON NUMERICAL INVERSION OF LAPLACE 
TRANSFORM 

The Laplace transform (image function in complex 
frequency-domain) F s  and the inverse Laplace transform 

(original function in time-domain) f t  are related by the 
forward transformation 

                        
0

s tLf t F s f t e dt                   (1) 

and the inverse transformation 

                       1 1
2

j s t

j
L F s f t F s e ds

j
.        (2) 

In general, it is straightforward to take the Laplace 
transform of a function. However, the inverse transformation 
is often difficult. In many cases, the method using simple rules 
and a table of transforms, and the method using the Bromwich 
integral and Cauchy integral theorem do not work well. A 
numerical technique has then to be utilized. In this work, we 
apply the method proposed by Hosono [10]. To apply his 
numerical inversion method, the following conditions must be 
satisfied. 

1) F s  is defined for Re 0s ;

2) F s  is nonsingular; 

3) lim 0
s

F s  for Re 0s ;

The most distinctive feature of this method lies in the 
approximation of s te . The main points are listed as follows. 

i)
2

s t ee lim
cosh s t

.            (3) 

ii) ,
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iii) The Bromwich integral is transformed to the integral 
around the poles of e cE s t, .

Then f t  is approximated by e cf t, , defined by 

          1
2

j

ec ecj
f t F s E s t ds

j
, ,           (7) 

2 43 5f t e f t e f t         (8) 

1
n

n
e t F             (9) 

where 0t , and 
       1 Im 0.5n

nF F j n t .        (10) 

Equation (8) shows that the function e cf t,  gives a 

good approximation to f t  when 1  and can be used for 
error estimation. Equation (9) is derived by substituting (6) 
into (7), and may be used for the effective numerical inversion 
of the Laplace transform. In practice, the infinite series in (9) 
has to be truncated after an appropriate number of terms. 
Since the infinite series is a slowly convergent alternating 
series, truncating to a small number of terms leads to a 
significant error. An effective approach using the Euler 
transformation has been developed, under the following 
conditions [11]: 

 a) There exists an integer 1k  such that the signs of nF
alternate for n k ;

b) For n k , 1
12 1n nF F .

With conditions a) and b) met, (9) can be truncated to 
l m

e cf t a, , which has N l m  terms and is given by 
1

1

1 0

, 2
l m

l m m
e c n m n l n

n n
f t e t F A F       (11) 

where m nA  are defined recursively by 

         1m mA ,               1

1
m n m n

m
A A

n
.              (12) 

In this method, the upper bound of the truncation error is 
given by 

                 1l m l m l m
e c e cR f t f t, ,, ,                      (13) 

while the upper bound of the approximation error is given by 

                         2
ecf t f t M e, ,                       (14) 

if
                                  f t M  for all 0t .

As indicated in (14), the relative approximation error is less 
than 2e , while the truncation error increases with t  and 

decreases with N . For a typical value of t , the calculation is 
repeated by increasing N  by 5 for an estimation of the 
truncation error. 

III. TIME-DOMAIN REFLECTION COEFFICIENTS

Without losing generality and for the comparison with 
results in [8], a one-pole Debye model with zero loss is 
utilized in this work. The Laplace variable s j  is 
introduced, and an interface between free-space and a 
dielectric half-space with unity permeability and a permittivity 

0 rs s  is considered, described by the Debye 
equation 

                         
1
s

r s
s

,                             (15) 

where s  is the static permittivity,  is the optical 
permittivity, s , and  is the relaxation time. 

A plane wave is obliquely incident onto the Debye half- 
space from free-space, at an incidence angle  relative to the 
normal to the interface. For horizontal polarization, the 
reflection coefficient is given by 

               
2

2

r
H

r

cos s sin
R s

cos s sin
( ) .        (16) 

Substituting for r s  from (15) leads to 

                    0 1

0 1

H
H

H

s s K s s
R s

s s K s s
( ) ,                       (17) 

where 

                   0
1s ,             

2

1 02

1 s sin
s s

sin
,        (18) 

and 

                                  
2sin

cosHK .                      (19) 

For vertical polarization, the reflection coefficient is given 
by

               
2

2

r r
V

r r

s sin s cos
R s

s sin s cos
( ) .        (20) 

Substituting r s  from (15) leads to 

               0 1 2

0 1 2

V
V

V

s s s s K s s
R s

s s s s K s s
( ) ,        (21) 

where 
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                                          2
1 ss ,                             (22) 

and

                                  
2

cos

sin
VK .                       (23) 

It is noted that either HR s  or VR s  does not satisfy 
condition 3) of Section II, that is, is not asymptotic to zero at 
high frequency, but instead 

                          1
lim

1
H

H Hs
H

K
R s R

K
         (24) 

and

                        
1

lim
1

V
V Vs

V

K
R s R

K
.                        (25) 

Subtracting terms HR  and VR  from HR s  and VR s
respectively gives the “reduced” reflection coefficients, 

0 1

0 1

2
1

H
H H H

H H

s s s sK
R s R s R

K s s K s s
( ) ( ) ,    (26) 

and

     0 1 2

0 1 2

2
1

V
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V V

s s s s s sKR s R s R
K s s s s K s s

( ) ( ) .    (27) 

Both HR s  and VR s  satisfy conditions 1) – 3) in 
Section II, under which Equation (9) holds. It can be proved 
that, for 0.5s j n t , both HR s  and VR s
also obey the two conditions a) and b) in Section II, under 
which l m

e cf t,  can be used to approximate e cf t,  (proof 
omitted because of space limitations). Hence, both reduced 
time-domain reflection coefficients HR t  and VR t  can be 
calculated using Equation (11). The required time-domain 
reflection coefficients HR t  and VR t  are then obtained by 

adding HR t  and VR t  to HR t  and  VR t  respectively. 
Before applying this technique to waveform parameter 

estimation, its correctness and effectiveness are verified by 
comparing the reduced transient reflection coefficients with 
those in [8]. Consider a water half-space and assume that the 
permittivity of water follows the Debye model. Figure 1 
illustrates the reduced reflection coefficients of water (at 
standard temperature and pressure) calculated using our 
technique, and shows excellent agreement with [8]. The 
reduced reflection coefficients do not include any impulsive 
component with amplitude of HR  or VR . The large scale on 
the vertical axis may be disconcerting at first look, but it 
should be noted that these reflection coefficients will be 
convolved with incident pulses with durations on the order of 
nanoseconds. Consider a Gaussian waveform incident upon a 
water half-space at 030 . The permittivity of water is 

assumed to follow the Debye model. The incident field is 
horizontally polarized and has an amplitude of 1 V/m and a 
pulse width of 1 ps. The reflected waveform can be 
determined using the convolution, 

r i i i
H H H HE t R t E t R t E t R E t ,

where HR t  is shown in Figure 1 and HR  is given by (24). 
The reflected waveform is plotted in Figure 2, and shows 
excellent agreement with Figure 4 in [8]. Also in Figure 2, it is 
seen that the incident Gaussian waveform is maintained, but 
with a long tail contributed by the waveform of HR t  due to 
the relaxation effect. 
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Fig. 1 Time-domain reduced reflection coefficients for water, 78 3s . ,

5 0. , 129.6 10 s, and 030 . Solid line: Our results for horizontal 
polarization; Plus sign: Results for horizontal polarization in [8]; Dashed line: 
Our results for vertical polarization; Circle: Results for vertical polarization in 
[8]. 
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Fig. 2 Reflected waveform for a horizontally polarized Gaussian pulse 
incident on a water half-space at 030 .
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IV. WAVEFORM PARAMETER ESTIMATION

Based on the above transient analysis, this technique can be 
utilized for the estimation of waveform parameters of 
reflected pulses. As an example, consider a mixture of water 
and ethanol with a volume fraction Fv . Here, 0Fv
corresponds to pure ethanol while 1Fv  corresponds to pure 
water. Bao et al. have shown the permittivity of this mixture is 
described quite well by the Debye model and have measured 
the Debye parameters for various volume fractions. The 
parameters can be approximated by the following expressions 
[12]: 

                      219 1 18 5 4 8F Fv v. . . ,                  (28) 

                             53 22s Fv ,                          (29) 

                             1.270.15 10 Fv ns.                          (30) 

One of the most important waveform parameters is the 
correlation between two waveforms. It indicates the degree to 
which two waveforms resemble each other and is defined by  

                 

2

1 20

m

s t s t t dt
C t

s
                    (31) 

             2 2
1 20 0

max ,ms s t dt s t dt               (32) 

Let 1s t  and 2s t  be the incident and reflected waveforms, 
respectively, and consider the Gaussian waveform in Section 
III incident upon a mixture half-space. The maximum value 

maxC  of C t  is plotted versus the volume fraction Fv  for 
three incident angles in Figure 3. maxC  is seen to increase with 

Fv  and .

V. CONCLUSIONS

A new technique has been developed for the transient 
analysis of pulse reflections from a Debye medium. Transient 
reflected pulses were analyzed using a time-domain 
convolution. Then, based on the analysis, the waveform 
parameters of reflected pulses were estimated, and the 
relationships between the waveform parameters of reflected 
pulses and the properties of dispersive material and incident 
angles discussed. The numerical results show excellent 
agreement with those in [8], supporting the effectiveness of 
this technique. This technique is based on the numerical 
inversion of the Laplace transform and has several significant 
advantages. 
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Fig. 3  Maximum correlation between the incident and reflected waveforms 
for a mixture irradiated by a horizontally polarized Gaussian pulse. 
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