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Abstract—In this study, we consider the high-frequency 

asymptotic analysis methods for the scattered field when a 
cylindrical wave is incident on a conducting circular cylinder. 
We derive the asymptotic solution applicable in each of the 
transition regions divided by the shadow boundary into the 
shadow and the lit side. The asymptotic solutions include a novel 
extended Pekeris caret function to which the second order term 
in the argument of the exponential in the integrand is added as 
compared with the Pekeris caret function including the UTD 
(uniform GTD) solution. By applying the residue theorem and 
the saddle point technique to the novel extended Pekeris caret 
function, we derive respectively the surface diffracted ray 
solution and the reflected geometrical ray solution which are 
effective exterior to the transition regions. The validity of the 
various asymptotic solutions derived here is confirmed by 
comparing with the exact solution. 

I. INTRODUCTION 
The studies in the high-frequency scattering by a smooth 

convex cylinder have been important research subjects for a 
variety of applications in the area of the analysis of the 
radiation patterns of antennas mounted near an aircraft 
fuselage and the radar cross section [1]-[9]. 

Pathak [3] and Pathak et al. [4] considered about the 
problem of the scattered field by a perfectly conducting 
cylinder and proposed the UTD (uniform GTD) solution 
which is applicable in the transition region [3], [5] near the 
shadow boundary (SB) and reduces automatically to the 
Keller’s GTD solution [1] exterior to the transition region. 

In this study, we consider the high-frequency asymptotic 
analysis methods for the scattered field by a conducting 
circular cylinder applicable in the transition regions divided 
by the SB into the shadow and the lit side. We newly derive 
the asymptotic solutions including an extended Pekeris caret 
function applicable in the transition regions. The extended 
Pekeris caret function derived in this study is denoted by the 
representation to which the second order term in the argument 
of the exponential in the integrand is added as compared with 
the Pekeris caret function in [3], [5], [10]. We derive the 
surface diffracted ray solution and the reflected geometrical 
ray solution effective exterior to the transition region by 
applying the residue theorem and the saddle point technique 
[11] to the extended Pekeris caret function. 

The validity of the various asymptotic solutions derived 
here is confirmed by comparing with the exact solution 
obtained from the eigenfunction expansion [5], [9]. 

II. FORMULATION AND INTEGRAL REPRESENTATION FOR THE 
SCATTERED FIELD 

Figure 1 shows a conducting circular cylinder with the 
radius of curvature   and the coordinate systems , ,  and 

, . The circular cylinder and the magnetic line source are 
placed in parallel and are extended from ∞ to ∞ in the  - 
direction. In this study, we consider the magnetic-type 
scattering problem in which the scattered magnetic field has 
only the  -direction component. 

The scattered magnetic field P ,  arriving at the 
observation point P ,  from the counterclockwise direction 
without encircling the circular cylinder after radiated from the 
magnetic line source Q , , can be given as follows [12] 
 

P ~ , Q exp ℓ ,
exp

√
 (1)

 

, Q 4
2

exp 4  

 
(2)

 
QQ , Q P (3)

 
ℓ , | | cos cos  (4)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Conducting circular cylinder, coordinate systems , ,  and , , 
and schematic figure for surface diffracted ray. Q , : magnetic line 
source. P , : observation point. SB: shadow boundary. 
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Here, , Q  denotes the incident ray propagating the 
distance  from the source Q to the surface diffraction point Q  
and ℓ the propagation distance from the point Q  to the other 
surface diffraction point Q  (see Fig. 1). The term in the 
brackets { } represents the cylindrical wave propagating the 
distance from the point Q  to the observation point P. 
Notation ,  denotes the transmission function, which 
expresses the scattering phenomena occurring along the arc ℓ 
and is defined as follows 
 

    ,
/

2√
exp

  
2  (6)

 
    i, ii (7)
 
     0 ,   ⁄ . (8)
 
Where ·  and ·  are the Airy functions [13] and the 
prime (i i) on the functions denotes the derivative with respect 
to the argument. The time factor exp  has been 
suppressed. In (1), the contribution from the direct ray before 
passing through a turning point when the observation point P 
is located to the lit region near the source Q has been omitted. 

As shown in Fig. 1, the surrounding space of the conducting 
circular cylinder is separated by the SB into the shadow and 
the lit region. Furthermore, the shadow region is divided into 
the transition region I near the SB and the deep shadow region 
II. Similarly, the lit region is divided into the transition region 
III near the SB and the deep lit region IV.  

III.  HIGH-FREQUENCY ASYMPTOTIC ANALYSIS FOR THE 
SCATTERED FIELD 

In this section, we consider the high-frequency asymptotic 
analysis methods for the scattered field applicable in the 
transition regions I and III near the SB. We also derive the 
surface diffracted ray solution in the deep shadow region III 
and the geometrical optics (GO) solution by the summation of 
the direct ray and the reflected geometrical ray in the deep lit 
region IV. 

A. Asymptotic analysis in the transition region I 
We consider an asymptotic analysis for the scattered field 

in the transition region I as shown in Fig. 1. 
By applying the following relationship in the Airy function  

 
    2 i  (9)
 
into (6), the transmission function ,  can be given by 
 
    , , ,  (10)
 

    ,
/

2√
exp 2

∞

∞
 (11)

 

 
(12)

 
 
When the integral ,  in (11) is performed by several 
manipulations, the following relationship can be obtained. 
 

,
/

2 √
2 √ /  (13)

 
√2 /2 0 . (14)

  
The function ,  in (12) differs in that the second 

order term including  in the argument of the exponential in 
the integrand is added as compared with the conventional 
Pekeris caret function  in [3], [5], [10]. Moreover, the 
function ,  in (12) differs in the integration contour 
compared with the extended Pekeris caret function defined by 
[9]. In this study, we newly define the extended Pekeris caret 
function as ,  in (12). 

Dividing the integration interval ( ∞, ∞) in (12) into the 
two integration intervals ∞, 0 ) and ( 0, ∞ ), and then 
performing the straightforward manipulation for the latter 
integral yield the following formula including the Fresnel 
function  [9], [12]. 
  

, ,
/

2 √
2 √ /  

 
                                                    for 0 (15)
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Substituting (13) and (15) into (10), the transmission function 

,  can be represented by  
 

,
/

2 √
2 √ / ,  (18)

 
and 
 

, ,
/

2 √
.. (19)

 
In this study, we newly define the extended Pekeris function 
as ,  in (16). 

Substituting ,  in (18) into (1), one may obtain the 
following asymptotic solution for the scattered field 
applicable when the observation point is located in the 
transition region I (P PS):       
 

ext ,
/4

√ 1
exp

2

2
2

∞

∞
.
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    PS  ~ , GO PS  
 

                    , Q  ,
exp

√
(20)

 
where , GO PS  is an pseudo incident wave which 
penetrates a conducting cylinder from the source Q  and 
reaches the observation point P  (see Fig. 2), and is given by 
 
  

(21)
 

 
In derivation of (21), the following approximations are used 
for the amplitude and the phase terms: 
 
     ＋                             for the amplitude term (22)
 
    2⁄    for  the phase term. (23)
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Pseudo incident wave and scattered field observed at the point  PS 
located in the transition region I, and direct ray and scattered field observed at 
the point PL located in the transition region III. 
 

B. Asymptotic analysis in the deep shadow region II 
We derive an asymptotic solution for the scattered field in 

the deep shadow region II as shown in Fig. 1. 
When the ,  in (19) is performed by several manipu- 

lations, the following integral can be obtained. 
 

    ,
/

2√
exp 2 . (24)

 
The pole singularities  1, 2, 3,  are determined 
from the following characteristic equation: 
 
    0 ,     1, 2, 3,  . (25)
 
The integration contour  in (24) is defined along the 
positive imaginary axis from ∞  to 0 and then along the 
positive real axis from 0 to ∞  (see Fig. 2 in [12]). The 
integral in (24) can then be evaluated rigorously by applying 

the residue theorem. Substituting the above result of  ,  
into (1) and then performing the rearrangement yield the 
following surface diffracted ray solution for the scattered field 
effective also in the deep shadow region II comparatively near 
a conducting cylinder [9], [12]. 
 

PS ~ , Q Q Q exp ℓ Ω ℓ
i
i 

 
i
i · Q Q

exp  
√

 . (26)

 
In (26), , Q  denotes the incident cylindrical wave, 

Q Q  the GTD’s surface diffraction coefficient at 
the point Q Q , and Ω  the attenuation constant for the th 
creeping mode [3]. Q Q  is the new modification 
coefficient for Q Q  and can be obtained directly 
from the  term in the exponential in (24). 

The coefficients Q , , Ω , and Q ,  are given by 
[9], [12] and the pole  is obtained from  
 

/ , 0. (27) 

C.  Asymptotic analysis in the transition region III 
We consider an asymptotic analysis for the scattered field 

in the transition region III as shown in Fig. 1. 
Substituting – | | instead of  in (20) and then applying the 

several approximations with | | 1,  one may obtain the 
following asymptotic solution for the scattered field 
applicable in the transition region III [12].  
 

PL ~ , GO PL  
 

, R
ℓ / , ℓ (28)

 

, R 4
2
ℓ exp ℓ 4  ,  ℓ QR (29)

 
| | 0 . (30)

 
The symbol a  is used for the solutions in the lit region. 

,  is the extended Pekeris caret function obtained by 
replacing  by  in  ,  of (12). In (28), , GO PL  is 
the direct ray passing through the turning point T and the 
second term of the right-hand side is a scattered field (see Fig. 
2). , R  is the incident cylindrical wave at the reflection 
point R  and ℓ QR  is the propagation distance from the 
source Q to the point R and ℓ RPL  from R to PL. 

D. Asymptotic analysis in the deep lit region IV 
Finally, we derive an asymptotic solution for the scattered 

field in the deep lit region IV as shown in Fig. 1. 
Applying the saddle point technique into ,  in (28) 

and then performing approximations with | | 1 yield the 
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following GO solution by the summation of the direct ray and 
the reflected geometrical ray effective in the deep lit region IV. 
 

     PL ~ , GO PL , R ℓ
ℓ . (31)

 
Where 1  is the reflection coefficient at the reflection 
point R. The square root term √  in (31) denotes the reflected 
ray divergence factor and can be obtained analytically since 
the extended Pekeris caret function ,  in (28) to which 
the  term in the argument of the exponential in the integrand 
is added was used. Notation  is the distance from the 
reflection point R to the caustic F and is defined by 
 

     RF
ℓ cos

2ℓ cos  .  (32)

 

IV. NUMERICAL RESULTS AND DISCUSSIONS 
In this section, we perform the numerical calculations 

required to assess the validity of the various asymptotic 
solutions derived in Sec. III.  

In Fig. 3, the scattered magnetic field magnitude curves are 
calculated as the function of the azimuthal angle | | 
when both the source Q and the observation point P are 
located relatively close to the cylindrical surface. Numerical 
parameters used in the calculations are given in the caption of 
Fig. 3. The SB is located at 95.7°. The numerical results of the 
exact solution from the eigenfunction expansion [5], [9], the 
asymptotic solution in (20), and the asymptotic solution in 
(28) are indicated by the solid curve (     ), the open circles 
( ooo ), and the closed circles ( ••• ), respectively. The 
closed squares ( ) are the calculation results by the 
superposition of the surface diffracted ray solution in (26) for 
the counterclockwise direction ( Q Q Q P ) and the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Comparison between the various asymptotic solutions and the exact 
solution. Numerical parameters: 5.0, 8.0, 7.0, and 100. 

surface diffracted ray solution for the clockwise direction 
( Q Q Q P ) shown in Fig. 1. Also, the broken curve 
(      ) is the numerical result by the GO solution in (31) add-
ing to the direct ray before passing through a turning point.  

It is confirmed that the asymptotic solutions of (20), (26), 
(28), and (31) agree excellently with the exact solution in the 
regions I, II, III, and IV, respectively (see Fig. 1). 

V. CONCLUSION 
We have derived the asymptotic solutions for the scattered 

field including the novel extended Pekeris caret function 
applicable in each of the transition regions divided by the SB 
into the shadow and the lit side when a cylindrical wave is 
incident on a conducting circular cylinder. We have also 
derived the surface diffracted ray solution and the geometrical 
optics solution which are effective exterior to the transition 
regions. By comparing with the exact solution, we have 
confirmed the validity of the various asymptotic solutions 
proposed in the present study. 
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