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Abstract—Diffraction of high-frequency electromagnetic wave
by strongly elongated spheroids is studied. Previous results are
generalized to the case of skew incidence.

I. INTRODUCTION

The rate of elongation of a body significantly affects the
diffraction phenomena. As the result high-frequency asymp-
totics which do not take into account the elongation may be
not accurate and even give a wrong approximations for the
electromagnetic field. Assuming that the radii of curvature ρ
and ρt in longitudinal an transverse cross-sections of the body
satisfy the relation

k2ρ3t/ρ ≡ χ = O(1), (1)

where k is the wave number, we derive a set of special
asymptotic expansions which possess uniformity with respect
to the rate of elongation. The high-frequency diffraction by
a strongly elongated spheroid was studied in [1], [2]. In the
leading order the current induced by an incident plane is given
by the asymptotics

J = exp (ikz)A

(
z
√
ρρt

, χ

)
sinϕ, (2)

where A is a special function defined by the integral

A(η, χ) =
2 exp(iπ/4)

π

exp(−iχη/2)
√
χ
√

1− η2

+∞∫
−∞

(
1− η
1 + η

)it
×

× Γ(1/2 + it) Wit,1(−iχ) dt

Wit,0(−iχ)Ẇit,1(−iχ) + Ẇit,0(−iχ)Wit,1(−iχ)
(3)

with M and W being Whittaker functions.
When χ → ∞, that is when the body becomes not too

much elongated, asymptotics (2) transforms to the usual Fock
formula. Comparison with test computations [3] shows that
formulae (2), (3) give a very accurate approximation of the
current in a wide range of values of elongation parameter χ
(see Fig. 1).

Further development of the approach in [4] was in the
analysis of the wave that reflects from the shaded end of the
spheroid and propagates in backward direction. It asymptotics
is given by the formula similar to (2), but with an additional
multiplier under the integral in (3). Interference of forward and
backward waves form oscillations seen on numerical curves on
Fig. 1.
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Fig. 1. Induced currents on the spheroid with semiaxes a = 1 m, b = 2.5 m
at frequencies 0.5 GHz (red), 1 GHz (green) and 2 GHz (blue). Elongation
parameters χ are 4.19, 8.38 and 16.77 correspondingly to 0.5, 1 and 2 GHz.
Solid curves present numerical solution, dashed — asymptotics (2), dotted —
Fock asymptotics.

All these results were obtained for the axially symmetric
problems, that is the incident plane wave was running along
the spheroid axis. In this paper we generalized the above
results to the case of incidence at a small angle to the axis.

II. ASYMPTOTIC PROCEDURE

Assumption (1) means that the semi-axes of the spheroid,
large b and small a, are such that ka2/b ≡ χ = O(1).
The asymptotic procedure follows the usual steps. First, the
boundary layer of thickness having the order O

(
(kρ)−2/3

)
and length of the order O

(
(kρ)−1/3

)
is introduced. The

boundary layer has the usual scale, but the whole spheroid
lies in that layer. This brings to the necessity to introduce
special coordinates. We introduce η, τ by the formulae

z = bη +
χ

2k

(
τ − 1

)
η, r =

√
bχ

k
(1− η2) τ .

Coordinate η is the angular spheroidal coordinate, it varies on
the interval [−1, 1], while τ is the scaled radial coordinate,
τ > 0 and τ = 1 on the surface.

The electromagnetic field E, H is searched in the form of
Fourier series by the angular coordinate ϕ. Maxwell equations
allow all the components of the field to be expressed via
Eϕ and Hϕ. After extracting the quick oscillating multiplier
exp(ikbη) and neglecting smaller order terms in the equations
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for Eϕ and Hϕ we get a system of “parabolic” equations. For
new unknowns P` and Q` such that

Eϕ = eikbη+i`ϕ {P`(η, τ) +Q`(ητ )} ,

Hϕ = eikbη+i`ϕ−iπ/2 {P`(η, τ)−Q`(ητ )}

the system for each harmonics reduces to two independent
equations

L`−1P` = 0, L`+1Q` = 0, (4)

where

Ln = τ
∂2

∂τ2
+

∂

∂τ
+
iχ

2

(
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) ∂
∂η

+

(
χ2

4
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4τ
− χ2

4

(
1− η2

)
− iχ

2
η

)
.

Equations (4) are supplied with boundary conditions on the
surface

P`(η, 1) +Q`(η, 1) = 0,(
∂

∂τ
+

1

2

)
(P`(η, 1)−Q`(η, 1)) = 0

(5)

and radiation conditions at τ → +∞.
By variables separation we solve equations (4), which

allows P` and Q` to be represented in the following form
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e−iχη/2√
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√
τ

+∞∫
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×
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2
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The multipliers p`, p′`, q` and q′` are arbitrary at this step.
The terms containing Whittaker functions M are regular on
the axis of the spheroid and correspond to the incident wave,
while terms with Whittaker function W satisfy the radiation
condition and represent reflected wave.

Further we consider the incident plane wave. It can be
represented as the sum of TE and TM waves

ETE = exp (ikz cosϑ+ ikx sinϑ) ey,

HTM = exp (ikz cosϑ+ ikx sinϑ) ey.

In the case of small angle ϑ = O
(
(kb)−1/2

)
these waves

satisfy “parabolic” equations (4), so we equate these waves
in a boundary layer to representations (6), (7). This yields
a system of integral equations for the amplitudes p` and q`.
These equations are of the type of convolution on the interval
[5] and can be solved explicitly.

Finally, substitution of representations (6), (7) with already
known amplitudes p` and q` into the boundary conditions (5)
yields expressions for p′` and q′`.

Setting τ = 1 in the formulae for Hϕ we find the asymp-
totics of the longitudinal component of the induced current

JTE = eikbηATE(η, χ,
√
kbϑ), (8)

JTM = eikbηATM (η, χ,
√
kbϑ). (9)

The special functions ATE and ATM can be most compactly
written in terms of Coulomb wave functions FL and H+

L
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where
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For β = 0 functions ATE and ATM reduce to A from (3).

III. NUMERICAL RESULTS

For the computation of Coulomb wave functions we used
FORTRAN program from [6]. Numerical analysis shows that
subintegral expressions in (10), (11) exponentially decrease at
±∞. The number of terms in the series that are significant is
not large. It grows with β, but for all the results presented in
this paper it was less than 15.

Absolute values of the currents on the surface of spheroids
those elongation parameters are χ = 10 and χ = 1 are
presented on Figs. 2 and 3. For axially incident wave, the TE
and TM polarizations do not differ except by the rotation by
∆ϕ = π/2. On not to much elongated spheroid of Fig. 2
currents rapidly decrease with η, however this decrease is
slower than predicted by Fock asymptotics. On more elongated
spheroid of Fig. 3 the attenuation becomes slower.

Distributions of currents for skew incidence change and
more noticeably for TM polarization. In the case of large χ
(smaller elongation) or large β (larger angle of incidence) the
character of currents distribution is more or less consistent
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Fig. 2. Absolute values of currents on elongated spheroid for χ = 10, at sections η = −0.75, -0.5, -0.25, 0, 0.25, 0.5 and 0.75 (colors from red to black),
at angles of incidence β = 0, 1, 2 and 3 (from left to right), TE polarization on the left halves and TM polarization on the right halves.
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Fig. 3. Same as on Fig. 2, but for χ = 1.

with the predictions of the usual high-frequency asymptotics.
On the side that turns to light currents grow with β and on
the opposite side except at the shadow ending of the spheroid
they decrease. Near the shadowed ending there appear peaks of
current when β is sufficiently large. These peaks are due to the
interference of creeping waves that run from the illuminated
side along the geodesics. The values of these peaks are larger
on more elongated spheroid because creeping waves are less
attenuated in this case.

One can be also notice that the effect of incidence angles
corresponding to the same value of β is larger on more
elongated spheroids. This can be explained by noting that the
position of the light-shadow boundary on the surface is defined
by the quantity α = β/

√
χ. At section ϕ = 0◦, for example,

it is at η = −α/
√

1 + α2.
It is worth noting a specific effect for small χ and β. The

current of TM wave increases on the illuminated side (at |ϕ| <
90◦), it becomes greater than 2 and grows with η.
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