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Abstract—We consider a cylindrical cavity resonator filled with
a nonlinear nondispersive medium and driven by an alternating
voltage. It is assumed that the medium lacks a center of inversion
and the dependence of the electric displacement on the electric
field can be approximated by an exponential function. We show
that the Maxwell equations are integrated exactly in this case and
the field components in the cavity are represented in terms of
implicit functions of special form. We demonstrate that Fourier
spectra of the driven electromagnetic oscillations in the cavity
contain singular continuous components.

I. INTRODUCTION

Nonlinear resonators are simple and convenient models of
physical systems and have been studied extensively in many
theoretical and experimental works (e.g. [1]–[4]). A variety of
existing electronic devices and materials with nonlinear elec-
tromagnetic properties makes it possible to create electrical
resonators with different types of nonlinearity. It is well known
that fairly complex, e.g., chaotic, oscillations can be excited in
nonlinear resonators [1]–[3]. In the past decades, substantial
interest has been shown in the characteristics of a new type
of complex nonlinear dynamics, intermediate between almost
periodic and random (see [5]–[7]). Such dynamics, which
is associated with a singular continuous spectrum, appears
typically in quasiperiodically driven nonlinear systems (e.g.
[8]–[14]).

A complete description of the complex dynamics of dis-
tributed nonlinear systems is fairly difficult to achieve. This
is explained by an infinite number of degrees of freedom
and the presence of several controlling parameters in such
systems. Because of this, most theoretical works on the subject
discuss nonlinear resonators as lumped systems or merely as a
collection of coupled oscillators or modes. Within the frame-
work of such an approach, the problem of oscillations in a
nonlinear resonator is reduced to solving a system of ordinary
differential equations. Although such a simplified approach is
justified in many cases, it is clear that electromagnetic systems
should generally be described by the Maxwell equations.

In this work, the problem of a nonlinear electrical resonator
is considered using a full set of the Maxwell equations. In
what follows, we apply the method for constructing exact ax-
isymmetric solutions of the Maxwell equations in a nonlinear
nondispersive medium, which has been developed in our recent
works [15] and [16], to the driven oscillations in a bounded
volume.

II. FORMULATION OF THE PROBLEM AND AN EXACT
SOLUTION OF THE NONLINEAR FIELD EQUATIONS

Consider electromagnetic fields in a cylindrical cavity of
radius a and height L. We assume that the z axis of a cylin-
drical coordinate system (r, φ, z) is aligned with the cavity
axis and limit ourselves to consideration of axisymmetric field
oscillations in which only the Ez and Hφ components are
nonzero. We will also assume that the cavity is filled with
a nonlinear nondispersive medium in which the longitudinal
component of the electric displacement can be represented in
the form

Dz = D0 + α−1ε0ε1[exp(αEz)− 1],

where ε0 is the permittivity of free space, and D0, ε1, and α
are certain constants. The possibility of using such a model
of nonlinearity for media lacking a center of inversion is
discussed in detail in [15]. It is shown in [15] that this model,
with appropriately chosen D0, ε1, and α, correctly describes
dielectric properties of such media in the case of moderately
small electric fields. Then the Maxwell equations are written
as

∂H

∂r
+
H

r
= ε(E)

∂E

∂t
,

∂E

∂r
= µ0

∂H

∂t
, (1)

where E ≡ Ez(r, t), H ≡ Hφ(r, t), µ0 is the permeability of
free space, and

ε(E) ≡ dDz

dE
= ε0ε1 exp(αE). (2)

The exact solution of system (1) can be represented in implicit
form as [15]

Ẽ = A−1E
(
ρ eα̃Ẽ/2, τ + α̃ρH̃/2

)
,

H̃ = eα̃Ẽ/2A−1H
(
ρ eα̃Ẽ/2, τ + α̃ρH̃/2

)
. (3)

Hereafter, A is a constant amplitude factor related to the
field source, Ẽ = E/A, H̃ = Z0H/(Aε

1/2
1 ), ρ = r/a,

τ = t(ε0ε1µ0)−1/2/a, and α̃ = αA, where Z0 = (µ0/ε0)1/2

is the impedance of free space. The functions E andH describe
the electromagnetic field in a linear medium and satisfy the
equations

∂2E
∂ρ2

+
1

ρ

∂E
∂ρ
− ∂2E
∂τ2

= 0, (4)
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and
∂E
∂ρ

=
∂H
∂τ

.

Let us take the following initial and boundary conditions
for linear wave equation (4):

E(ρ, 0) = 0,
∂E
∂τ

(ρ, 0) = 0, 0 ≤ ρ < 1, (5)

E(1, τ) = A (sin Ω1τ + 0.5 sin Ω2τ), 0 ≤ τ <∞, (6)

where Ω1,2 are normalized constant frequencies such that
Ω1,2 = λ1,2a(ε0ε1µ0)1/2, i.e., Ω1,2τ = λ1,2t. The frequencies
Ω1 and Ω2 are related as Ω1 = σΩ2, where σ = (

√
5− 1)/2

is the golden mean. The boundary value problem defined by
Eqs. (4)–(6) describes the driven electromagnetic oscillations
in a cylindrical cavity specified by the relations ρ = r/a ≤ 1
and 0 ≤ z ≤ L, which is filled with a linear medium having
the permittivity ε = ε0ε1 = const (α = 0). The linear
oscillations are thus driven by an electric field (6) which
can be produced by two coaxial metal rings of radius a that
are separated by distance L if an almost periodic voltage
V = E(1, τ)L = AL(sinλ1t+0.5 sinλ2t) is applied between
them. The solution to the linear boundary value problem
specified by Eqs. (4)–(6) can be found in a standard way [17].
As a result, the functions E and H are written as

E(ρ, τ) =

2∑
j=1

BjJ0(Ωjρ) sin Ωjτ

+

∞∑
n=1

CnJ0(κnρ) sinκnτ,

H(ρ, τ) =
2∑
j=1

BjJ1(Ωjρ) cos Ωjτ

+

∞∑
n=1

CnJ1(κnρ) cosκnτ, (7)

where

Bj =
A

jJ0(Ωj)
, Cn = 2A

2∑
j=1

Ωj
j(Ω2

j − κ2
n)J1(κn)

,

Jm is the Bessel function of the first kind of order m, κn is the
nth root of the equation J0(κ) = 0, and Ω1,2 6= κn. We denote
eigenfrequencies of the E0n0 modes [18] of a linear resonator
as ωn. Hence, ωn = κn(ε0ε1µ0)−1/2a−1 and κnτ = ωnt.

Substituting functions (7) into formulas (3), we obtain an
exact solution to system (1) in implicit form. Thus, the field
components E and H in a cylindrical cavity filled with a
nonlinear medium for which ε(E) is written in the form of
Eq. (2) are found from the solution of a set of transcendental
equations (3) in which E and H, defined by relationships (7),
are almost periodic functions of τ . In the nonlinear case, the
fields E and H , which are determined by Eqs. (3) and (7),
satisfy the same initial conditions as in Eq. (5):

E(ρ, 0) = 0,
∂E

∂τ
(ρ, 0) = 0, 0 ≤ ρ < 1. (8)

However, the electric field oscillations on the side wall of the
nonlinear resonator (ρ = 1) in the found solution do not obey
Eq. (6). Putting ρ = 1 in formulas (3), we have

Ẽ = A−1E
(
eα̃Ẽ/2, τ + α̃H̃/2

)
,

H̃ = eα̃Ẽ/2A−1H
(
eα̃Ẽ/2, τ + α̃H̃/2

)
. (9)

The dependence Ẽ(1, τ) determined by relationships (9) can
be regarded as a drive signal in the boundary value problem
given by Eqs. (1), (8), and (9) for a nonlinear (α 6= 0)
resonator.

Thus, formulas (3), with E and H given by relationships (7),
yield an exact solution of the nonlinear boundary value
problem for system (1) under conditions (8) and (9), and
describe driven electromagnetic oscillations in a cylindrical
cavity resonator filled with a nonlinear medium. A typical
example of such a medium can be a ferroelectric crystal. Note
that ferroelectric resonators are known to be of great interest
for many promising applications [4].

Observe that the oscillations on the axis ρ = 0 of the
nonlinear resonator in the obtained exact solution coincide
with the oscillations for ρ = 0 in the “seeding” linear problem.
It follows from Eqs. (3) and (7) that for ρ = 0,

E(0, τ) ≡ E(0, τ) =

2∑
j=1

Bj sin Ωjτ +

∞∑
n=1

Cn sinκnτ,

H(0, τ) ≡ H(0, τ) = 0.

Thus, the electric field oscillations on the axis ρ = 0 are
described by an almost periodic function of τ and have the
discrete spectrum.

For ρ 6= 0, the exact solution expressed in terms of
implicit functions is very complicated and can be studied only
numerically. It turns out that for ρ 6= 0, the field oscillations
described by this solution may have a singular continuous
(fractal) spectrum.

To confirm the above statement, we turn to results of
calculations of the quantities Ẽ and H̃ determined by Eqs. (3)
and (7). In what follows, the main attention will be focused
on analyzing the obtained solutions in the case where the
drive frequency λ2 relates to the fundamental eigenfrequency
ω1 of a linear resonator as λ2/ω1 = Ω2/κ1 = σ (note
that the identity Ω1 + Ω2 = κ1 is valid in this case).
In our calculations, we retain 100 terms of the series over
n in formulas (7). It should be noted that the employed
theoretical model of a nondispersive medium does not allow
one to indefinitely increase the nonlinearity parameter α̃ in
solutions (3). For large absolute values of α̃, implicit functions
Ẽ(ρ, τ) and H̃(ρ, τ) determined by Eqs. (3) and (7) become
ambiguous, and solutions (3) obtained without allowance for
dispersion will be inapplicable [15]. For fixed α̃ and Ω1,2,
the ambiguity points appear first in the time dependences
Ẽ(1, τ) and H̃(1, τ) (for ρ = 1) since the nonlinear effects
are accumulating with increasing ρ [15]. Therefore, as a first
step in practical calculations, one should study the functions
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Ẽ(1, τ) and H̃(1, τ). If these functions are unambiguous and
continuous, then Ẽ and H̃ possess the same properties for
0 ≤ ρ < 1. In all the computations, we use the maximum
possible value α̃ = 0.32 for chosen Ω1,2.

Now consider the field oscillations on the wall ρ = 1 of
the nonlinear resonator. The dependences Ẽ(1, τ) and H̃(1, τ)
determined by relationships (9) are shown in Fig. 1 by the red
and blue solid lines, respectively. For comparison, the solid
and dashed black lines in Fig. 1 show the functions E and
H, respectively. It is seen in Fig. 1 that the functions Ẽ and
H̃ demonstrate fairly complex behavior and essentially differ
from the corresponding quantities E/A and H/A in the linear
regime (α = 0) by the presence of small amplitude spikes.
We emphasize that the value α̃ = 0.32 and the field values
in Fig. 1 correspond to a weak nonlinearity. In this case,
the exponential nonlinearity model almost coincides with the
quadratic nonlinearity model widely used for noncentrosym-
metric media.
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Fig. 1. Oscillograms of the electric (Ẽ) and magnetic (H̃) fields on the
wall ρ = 1 of a nonlinear resonator (red and blue solid lines, respectively),
calculated by formulas (9), and the corresponding quantities E/A and H/A
in the linear regime (solid and dashed black lines, respectively).

III. SINGULAR CONTINUOUS SPECTRUM ANALYSIS

To reveal nontrivial spectral properties of the oscillations
considered, we use the singular continuous spectrum analy-
sis (see [6], [9]–[11], [13]). We define the partial Fourier sums

SE(Ω, T ) =

T∑
m=1

Ẽme
iΩτm ,

SH(Ω, T ) =

T∑
m=1

H̃me
iΩτm , (10)

where {Ẽm} and {H̃m} are the time series of the variables
Ẽ and H̃: Ẽm = Ẽ(τm) and H̃m = H̃(τm). The Fourier
transforms scale with T as

|SE(Ω, T )|2 ∼ T β , |SH(Ω, T )|2 ∼ T γ , (11)

where β = β(Ω) and γ = γ(Ω) are scaling exponents (e.g.
[6], [9], [11]). The evolution of SE and SH with T can be
represented by paths in the complex planes (ReSE , ImSE)
and (ReSH , ImSH ), respectively. It is known [9] that for
β = γ = 2, the frequency Ω belongs to the countable set of
discrete spectral components of an almost periodic oscillation
and there exist persistent motions (drifts) of SE and SH in the

corresponding complex planes. A singular-continuous spectral
component appears if (i) β 6= 1, 2 and/or γ 6= 1, 2 and (ii) the
path in the complex plane is fractal (see [6], [9]–[11], [13]). A
singular continuous spectrum is known to be a Cantor set (e.g.
[7], [14]).
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Fig. 2. Singular continuous spectrum analysis of the time series {Ẽm} and
{H̃m} for ρ = 1. (a) |SE |2 and (b) |SH |2 as functions of log10T at Ω = κ3
and Ω = Ω7,3,4. The paths of (c) SE and (d) SH in the complex planes
(ReSE , ImSE ) and (ReSH , ImSH ), respectively, at Ω = Ω7,3,4. The
paths of (e) SE and (f) SH in the same planes at Ω = 3Ω1+5Ω2+5κ5−4κ4.

We have found that at some frequencies, the spectrum has
the scaling exponents β = γ = 2. Figures 2(a) and 2(b)
show |SE |2 and |SH |2 as functions of log10T for ρ = 1 at
one of such frequencies, namely, Ω = κ3 = 8.65 . . . . The
corresponding paths in the complex planes display persistent
motions. Thus, in this case, we deal with a discrete compo-
nent of the spectrum. However, at the combination frequency
Ω7,3,4 = 32.96 . . . (hereafter, Ωl,m,n = lΩ1 + mΩ2 + nκ2),
we have β ≈ 1.7 and γ ≈ 1.62 [see Figs. 2(a) and 2(b)],
and the behavior of the dependences |SE |2 and |SH |2 in this
case is typical of a singular continuous component (e.g. [9],
[11], [13]). The corresponding paths in Figs. 2(c) and 2(d)
exhibit fractal structures. These results strongly suggest that
the considered spectrum of electromagnetic oscillations is not
purely discrete and contains singular continuous components.
For ρ = 1, we have also found such components at various
combination frequencies (for example, Figs. 2(e) and 2(f)
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show the complex planes of SE and SH at the frequency
Ω = 3Ω1 + 5Ω2 + 5κ5 − 4κ4 = 37.67 . . .). For many
frequencies, a power-law growth of the spectrum is observed
with the exponents β and γ which differ from 2 only slightly.

We now pass to consideration of some spectral features of
oscillations inside a nonlinear resonator for ρ = 0.5. Here,
the components of the singular continuous spectrum appear
at higher frequencies than for ρ = 1. The values of β and
γ for ρ = 0.5 turn out to be smaller than for ρ = 1 at the
same frequency. For example, at Ω = Ω6,5,4 = 35.02 . . . ,
we have β ≈ 1.52 and γ ≈ 1.8 for ρ = 1, and β ≈ 1.05
and γ ≈ 1.05 for ρ = 0.5 [see Figs. 3(a) and 3(b)]. The
corresponding curves in the complex planes (ReSE , ImSE)
and (ReSH , ImSH ), which are presented in Figs. 3(c) and
3(d), display fractal behavior.
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Fig. 3. Singular continuous spectrum analysis of the time series {Ẽm} and
{H̃m} for ρ = 0.5. (a) |SE |2 and (b) |SH |2 as functions of log10T at
Ω = Ω6,5,4. The corresponding paths of (c) SE and (d) SH in the complex
planes.

IV. CONCLUSION

Thus, our analysis shows that the Fourier spectrum of the
electromagnetic oscillations in the cavity is a mixture of
discrete and singular continuous components. Similar phe-
nomena have been reported in the literature and discussed
in, e.g., [9] and [14] as applied to the dynamics described
by forced maps and symbolic sequences. The existence of
regimes with singular continuous (fractal) spectra in dis-
sipative dynamical systems described by discrete maps or
ordinary differential equations is well known (see [8]–[11]).
Such regimes corresponding to strange nonchaotic attractors
are realized on sets of positive measure in the parameter
spaces of dissipative dynamical systems and are typical of
the intermediate region between almost periodic and random
motions. Our study demonstrates that the nonlinear dynamics
with a singular continuous spectrum can occur in an exactly
integrable distributed nondissipative system. We have found

that the implicit functions given by Eqs. (3) and (7), which are
exact solutions of system (1), are not almost periodic in τ and
their Fourier spectra contain singular continuous components.
Studying these functions is of great interest for physics and
mathematics. We have shown that such functions can be finite-
amplitude single-valued solutions of the Maxwell equations
and, hence, describe actually existing electromagnetic oscil-
lations. Thus, Eqs. (3) and (7) provide a new description of
complex nonlinear dynamics.
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