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Abstract—We propose a numerical method for computation of
singular electromagnetic fields in a polyhedral non-convex cavity.
The method is based on edge conforming elements augmented by
special singular functions. The continuity of the total solution is
enforced weakly via numerical fluxes. The method can be easily
implemented within existing conforming finite element codes. As
an application for the method we consider the computation of the
smallest non-zero Maxwell eigenfrequency in a simple resonator
cavity.

I. INTRODUCTION

The problem of finding frequencies and modes of electro-
magnetic waves appears in many important practical applica-
tions, such as signal processing, stability analysis etc. This
problem is challenging because of the following two main
reasons. The curl-operator has an infinite dimensional kernel
– the gradient fields. The other difficulty occurs because of the
singular behavior of the eigenmodes near re-entrant edges (or
vertices) of the cavity, i.e. electromagnetic field tends to infin-
ity. We will address only the latest issue. The natural function
space for the solution of the curl-curl problem is formed by
tangentially continuous edge elements, introduced by Nédélec.
However, with edge finite element methods in order to reach
an acceptable approximation for singular solutions, one has
to use either strong mesh refinement and/or high degree
polynomials [1]. A more effective approach is to employ
special singular elements as introduced, e.g., by Webb [2] for
tetrahedral meshes. The discretization by means of continuous
elements (H1) can be remedied by augmenting finite elements
by special singular functions, [3] or by introducing suitable
weights for a bilinear form near solution singularities, [4]. As
an alternative to usual cut-off function, Lagrange multiplier
techniques or solving additional boundary value problem with
singular function defined over boundary, we employ the idea of
DG-FEM, proposed for the 2D Laplacian problem in Classen
et al [5]. Details on DG discretizations applied to Maxwell
eigenvalue problems can be found in [6], [7]. In order to
test the applicability of the method, we consider the Maxwell
eigenvalue problems in a tensor product three-dimensional
domain with perfect electric conductor (PEC) or mixed PEC
and perfect magnetic conductor (PMC) boudary conditions.

The first eigenpairs of these model problems coincide with
the solution of corresponding 2D eigenvalue problem for the
Laplace operator. The singular function can be found explicitly
as a solution to the Dirichlet problem for the Laplacian in the
plane sector with obtuse angle [8].

II. MAXWELL RESONANCE FREQUENCIES

For the sake of brevity, we make the following assumptions.
Let Ω be a homogeneous, isotropic, non-convex polyhedral do-
main with a dielectric material filing and perfectly conduction
boudary ∂Ω. Then the Maxwell eigenvalue problem can be
written as follows. Find � ∈ IR+, E ∈ L2(Ω)3 such that

curl curlE −�2E = 0 in Ω, (1)
divE = 0 in Ω,

E × n = 0 on ∂Ω.

It is known, [8], that for non-convex polyhedral domain with
straight re-entrant edges the solution to this problem contains
the following electrical singular functions

El,1
e = (grad x,yΦ

l,Dir
e , 0) and El,2

e = (0, 0,Φl,Dir
e ). (2)

Here Φl,Dir
e = d(ze) r

π/ζe
e sin

(
lπθe
ϕe

)
, l ∈ IN, is a Laplace-

Dirichlet edge singularity written in cylindrical coordinates
(re, θe, ze) with axis on the edge e of aperture ζe > π, where
d is a smooth function.

Due to [9], the following decomposition of the electric (or
magnetic) field holds true.

E = E0 + gradϕ :

{
E0 ∈ H1+τ (Ω)3, ∀τ < π

ζe
,

gradϕ ∈ H1+τ (Ω)3, ∀τ < π
ζe
.

Hence, the approximation will be determined by the regularity
of the regular part. Depending on the choice of singular
functions it can be quite low, typically Hs, with s < 4

3 [3],
[8].

III. DG-FEM

We consider shape-regular affine meshes Th that partition
the domain Ω into hexahedra K, where the parameter h
denotes the mesh size. Let F i

h be the set of all interior faces of
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elements in Th and Fb
h be the set of all boundary faces. We de-

fine a finite element approximation space Σh,p(Th) ∈ L2(Ω)3.
The tangential jumps and averages across an interior face are
defined by

[[u]] = u+ × n+ + u− × n−, {{u}} = (u+ + u−)/2,

correspondingly. Then a general bilinear form for a DG
method reads

B(Eh, vh) = (curlEh, curl vh)− λh(Eh, vh)

−
∫

Fi
h

[[E∗
h − Eh]]{{curl vh}}− {{E∗

h − Eh}} [[curl vh]] ds

−
∫

Fi
h

[[q∗h]]{{vh}}− {{q∗h}} [[vh]] ds

−
∫

Fb
h

(n× (E∗
h − Eh))curl vh − q∗h(n× vh) ds

∀vh ∈ Σh,p(Th)

(3)

The derivation of a bilinear form for a DG method can be
found in [10] and it follows the same ideas as the one in
[11] for the Laplace operator. First of all, by introducing an
auxiliary variable q = curlE ∈ L2(Ω)3 the Maxwell’s equa-
tion (1) is rewritten as a first-order system. Then one follows
the standard DG approach, i.e., both resulting equations are
multiplied with arbitrary test functions and integrated by parts,
the numerical fluxes are substituted in the boundary integrals
and finally the second equation is again integrated by parts.
Using the global lifting operators one can express the auxiliary
variable and finally eliminate from the system.

Since the solution to the problem we consider is discon-
tinuous only along an interface, the bilinear form (3) can be
simplified. Let Γe be a re-entrant edge. Along the edge Γe we

Ω

Ωr0

I Γe

r0

Fig. 1. Problem geometry showing a re-entrant edge domain discretized by
a regular Cartesian grid. The white line shows the boundary of the cylindrical
enrichment domain omega of radius r including the singular edge at the origin

define an enrichment domain Ωr0 = Ω ∩ (B(0, r0) × [0, Z])
and the interface I = ∂Ωr0\Γe between domains with only
continuous and enriched elements, see Fig. 1. For the tangen-
tially continuous part of the solution we choose an H(curl )-
conforming finite element space Vh,p(Th) ∈ H0(curl ,Ω). The

approximation space Vh,p(Th) is augmented by corresponding
singular functions (2), i.e. we introduce a subspace

Sr0,α = {El,1
e , El,2

e : l ∈ [1, L], α = π/ζe}, (4)

defined on Ωr0 . Incorporating the following numerical fluxes

E∗
h = (Eh|K)∂K and q∗h = (curlEh|K)∂K

for (3), the proposed variational formulation reads
∫

Ω

curlEh curl vh dx−
∫

I
[[curlEh]]{{vh}}−{{curlEh}}[[vh]]ds

= λh

∫

Ω

Ehvh dx ∀vh ∈ Vh,p(Th)× Sr0,α. (5)

Since DG-FEM formulation (5) reduces to a standard FEM
H(curl ) formulation when the enrichment domain is omitted,
implementation of the proposed method based on existing
FEM code is quite simple. Furthermore, the increase of
number of degrees of freedom is negligible, only two new
unknowns if singular functions only of the first order are used.
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Fig. 2. Comparisons of convergence rates of the smallest non-zero Maxwell
eigenfrequency (ω0 ≈148 MHz) obtained by edge conforming FEM and the
DG-FEM for the thin L-shaped PEC brick

Fig. 3. Amplitude of the electric and magnetic fields corresponding to the
smallest non-zero Maxwell eigenfrequency for the thin L-shaped PEC brick
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IV. NUMERICAL EXAMPLES

We present three examples which show feasibility of the
proposed method and improvement of convergence order as
compare to the standard edge-based FEM. Eigenvalue prob-
lems were solved numerically via Krylov-Schur method using
shift and invert spectral transformation and LU factoriza-
tion, as a preconditioner. Reference solutions, i.e. the first
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Fig. 4. Comparisons of convergence rates of the smallest non-zero Maxwell
eigenfrequency (ω0 ≈58 MHz) obtained by edge conforming FEM and the
DG-FEM for the thin L-shaped PMC-PEC brick

Fig. 5. Amplitude of the electric and magnetic fields corresponding to the
smallest non-zero Maxwell eigenfrequency for the thin L-shaped PMC-PEC
brick

eigenvalues of the corresponding problems, are correct for
at least 11 digits, see [12]. Integrals in (5) with highest
singularity, i.e.

∫
Ω
r
− 2

3
e dx were computed analytically. For the

other integrals arising from singular functions a tensor product
Gauss quadrature rule was employed.

Fig. 2 illustrates convergence orders obtained by FEM and
DG-FEM for the first Maxwell eigenvalue in L-shaped brick
with PEC boundary condition. In Fig. 3 we show amplitudes
of the corresponding electric, magnetic fields and a zoomed
version of the latter. In this case electric field is regular, but
the magnetic field exhibits a singular behavior along the edge.
Therefore the singular function of the second type El,2

e =
(0, 0,Φl,Dir

e ) is an important part of the solution.

In the second example, Fig. 4, we consider the Maxwell
eigenvalue problem in the domain with mixed boundary con-
ditions, PMC boudary condition is imposed everywhere except
from two planes orthogonal to the re-entrant edge with PEC
boundary. The singular functions in this case take also a form
of (2) with Φl,Dir

e replaced by the Laplace-Neumann edge
singularity Φl,Neu

e . Since only the magnetic field has a singular
behavior along the edge, as can be see from Fig. 5, the singular
function of the second type El,2

e = (0, 0,Φl,Neu
e ) gives again

the contribution to the solution.
The problem geometry for the third example, Fig. 6, is

reverse to the previous one, that is, PEC boudary condition
is satisfied everywhere except from two planes orthogonal to
the re-entrant edge with PMC boundary condition. Here the
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Fig. 6. Comparison of convergence rates of the smallest non-zero Maxwell
eigenfrequency (ω0 ≈58 MHz) obtained by edge conforming FEM and the
DG-FEM for the thin L-shaped PEC-PMC brick

Fig. 7. Amplitude of the electric and magnetic fields corresponding to the
smallest non-zero Maxwell eigenfrequency for the thin L-shaped PEC-PMC
brick

electric field is singular along the re-entrant edge, see Fig. 7,
and the singular function of the first type (2) has a main impact
on the solution. From the numerical experiments we observed
that variational formulation (5) with the singular function of
the first type demands a small modification for the enrichment
subspace (4). Due to curlEl,1

e = 0, we replace El,1
e by

χr0E
l,1
e , where χr0 can be chosen as χr0(r) = σ e−

r2

2σ2 ,
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σ = r0/
√
2 ln 2. In this case, curlχr0E

l,1
e = O(rα). We

note, that the function χr0 defined on the enrichment domain
Ωr0 is not a standard cut-off function since its parameters are
chosen such that it represents only full width at half maximum
(FWHM) part of the global cut-off function. Therefore (5)
does not reduce to the variational formulation augmented
by singular functions with continuity enforced via a cut-off
function.

V. CONCLUSION

In this study we introduced a combined DG-FEM method
which incorporates modeling of both electrical and magnetic
field singularities. Improvement in accuracy and convergence
rate can be observed in the numerical examples. Recently
Badia and Codina, [13], proposed a general combined nodal
continuous-discontinuous Galerkin mixed formulation that al-
lows arbitrary finite element spaces with functions continu-
ous in patches of finite elements and discontinuous on the
interfaces of these patches. In the future we plan to extend
a DG-FEM method to a mixed variational formulation with
locally singular basis functions instead of (5). Employing the
mixed variational formulation will give us more freedom for
choosing numerical fluxes, increase stability of the method and
make the modification of the singular functions of the first type
unnecessary.
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