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Abstract—The electromagnetic modelling of cavity resonators
loaded with dielectric material is important with respect to
corresponding material measurements. In this paper, a varia-
tional technique is employed to determine the complex reso-
nant frequencies of the loaded cavity resonator. Inhomogeneous
impedance boundary conditions are considered to take the effects
of lossy walls and the filling hole of the resonator on the resonance
into account. An eigenmode expansion of the magnetic field
appearing in the variational formulation results in a nonlinear
eigenvalue problem in terms of the complex resonant frequency.
An iterative scheme is employed to solve the nonlinear eigen-
value problem. Given an initial guess, the nonlinear eigenvalue
problem is approximated by a quadratic eigenvalue problem.
The approximated quadratic eigenvalue problem is transformed
to a generalized eigenvalue problem that is solved by using
the generalized Schur decomposition. Also, the inverse problem,
where the complex wavenumber is measured and the material
parameter is to be determined, is discussed. In order to show
the capabilities of the proposed method, the computed resonant
frequencies are compared with measured data.

I. INTRODUCTION

It is very well known that key parameters of resonators
are resonant frequency and quality factor. In fact, complex
eigenvalues of an electromagnetic problem are formed by these
two parameters, which can also be considered as complex
resonant frequencies. In the case of finite conductivity, lossy
materials or radiaton losses, the self-adjoint property of the
electromagnetic problem disappears. From a mathematical
point of view, it results in complexification of the eigenvalues
of the resonator problem.

Material characterization is an important application of
loaded resonators. A filling hole which may be required to
place the material sample inside the cavity has an effect on
the complex resonant frequencies [1], [2]. Finitely conductive
walls also affect the performance of the resonator [3]. Finitely
conductive walls can be modelled by an impedance boundary
condition which makes the problem of finding eigenvalues of
a resonator nonlinear. In [3], complex resonant frequencies
of an empty resonator having lossy walls were determined
by a variational technique with a reliable approximation for
linearization.

In this sense, the aim of this study is to determine the
complex resonant frequencies of a cavity resonator having

lossy walls, a filling hole, as well as dielectric loading and
estimate material parameters when the measured complex res-
onant frequency is given. The problem of finding the complex
eigenvalues of the loaded resonator is formulated as variational
problem [3]. The finitely conductive walls are modelled by
impedance boundaries. Under appropriate assumptions, the
filling hole is also modelled by an artificial impedance wall. Its
impedance is chosen as the wave impedance of an appropriate
evanescent mode of a waveguide having the same cross-section
as the filling hole. Then, the impedance of the lossy walls
and of the artificial impedance of the filling hole makes
the surface impedance a piecewise constant function. The
magnetic field is expanded in terms of the natural modes
of the cavity in order to reduce the variational expression
into matrix form. The resulting eigenvalue problem, where
the material parameters are given and the complex resonant
frequency is to be obtained, is nonlinear. This problem is called
the direct problem. The problem, where the material parameter
is to be obtained by using the measured complex resonant
frequency is called the inverse problem and is a generalized
eigenvalue problem. In order to solve the direct problem, it
is approximated by a quadratic form. Then, it is transformed
into a generalized eigenvalue problem by substituting a new
variable [4]. The generalized eigenvalue problem is solved by
using the generalized Schur decomposition [5]. This scheme
is employed iteratively until a predefined stopping criteria is
satisfied. In the inverse problem, the material parameters are
estimated by applying the generalized Schur decomposition. In
order to demonstrate the capabilities of the proposed method,
a comparison of the complex resonant frequencies with some
experimental data is presented. The complex relative permit-
tivities of teflon and compressed and bound silicon carbide
powder are presented.

II. FORMULATION

A. The direct problem

Consider the geometry shown in Fig. 1, where a circular
cavity V with a boundary surface S is loaded with a non-
magnetic (µ = µ0) object D. It has complex permittivity
εdε0, where ε0 is the permittivity of vacuum. The background
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(b) Cross-sectional view

Figure 1. Cylindrical cavity with dielectric probe.

medium V \ D̄ is assumed to be vacuum (ε = ε0). Hence, the
relative permittivity is

εr(r) =

{
εd for r ∈ D

1 for r ∈ V \D ,
(1)

where r is the position of any point inside the cavity. The
boundary surface S \ S1 represents the conductive walls. The
circular filling hole that is used to plunge the dielectric material
sample into the cavity is denoted by surface S1. The cavity
walls shall be thick and the hole diameter shall be below cutoff
such that the field inside the hole decays rapidly. Under these
assumptions, one can define the boundary of the cavity as a
piecewise constant impedance

Z(r) =

{
Zw for r ∈ S1

Zs for r ∈ S \ S1 .
(2)

Here, Zs and Zw are the surface impedance of the finitely
conductivity walls and the wave impedance of an appropriate
evanescent mode of a waveguide having the same cross-section
as the filling hole, respectively. Then, the magnetic field H
satisfies the vector wave equation

∇× 1

εr(r)
∇×H − k2H = 0 (3)

and is subject to the boundary condition

n×∇×H = −jY0kZ(r)Ht , (4)

where Ht, Y0 n and k denote the tangential component of
the magnetic field, the intrinsic admittance of vacuum, the unit
inward normal to the surface S, and the complex wavenumber
to be determined, respectively. The problem of finding the

complex eigenvalues k of (3) subject to the approximate
boundary condition (4) can be converted into a variational
problem. One can take the inner product between the wave
equation (3) and H , use Green’s first identity, and impose the
boundary condition (4) in order to obtain the functional

I =

∫
V

[(∇×H) · 1

εr
(∇×H)− k2H ·H] dV

+ jkY0

∮
S

ZHt ·Ht dS, (5)

which is a variational expression for the complex wavenumber
k. Since the undamped modes Hn of the empty cavity form
a complete set, the magnetic field H appearing in (5) is
expanded into the undamped modes Hn

H =
N∑

n=1

αnHn . (6)

Here, αn are the unknown coefficients of the undamped
modes. One can reduce the problem to matrix form by
inserting (6) in (5) and equalling the first variation of the
functional with respect to the unknown coefficients αn to zero

(Amnk
2 +Bmn(k)k+Cmn − ν(εd)Emn)(αn) = 0,

n,m = 1, 2, . . . , N , (7)

where

Amn =

∫
V

Hn ·Hm dV (8)

Bmn = jY0

∮
S

ZHt
n ·Ht

m dS (9)

Cmn = −knkmδnm (10)

Emn =

∫
D

(∇×Hn) · (∇×Hm)dV (11)

ν(εd) =

(
1

εd
− 1

)
. (12)

Equation (7) is a nonlinear eigenvalue problem in terms of the
complex wavenumber k. Here, B = [Bmn] and E = [Emn]
are symmetric and can be evaluated numerically or analyti-
cally. A = [Amn] is the identity matrix. kn and δmn denote
the real wavenumber of the lossless empty cavity belonging
to the modal field Hn and the Kronecker delta, respectively.
Given an initial guess k0, the nonlinear eigenvalue problem is
approximated by a quadratic one

Q(k1) =
(
Ak21 +B(k0)k1 + C

)
α = 0. (13)

The N dimensional quadratic eigenvalue problem can be
converted into a 2N generalized eigenvalue problem by sub-
stituting u = k1α [4][

0 I
−C + νE −B(k0)

] [
α
u

]
− k1

[
I 0
0 A

] [
α
u

]
= 0 , (14)

which is solved by the generalized Schur decomposition [5].
Once k1 is obtained, B is updated as B(k1) and the quadratic
problem is solved again. This iteration scheme is continued
until a desired level of accuracy is obtained.
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B. The inverse problem

With the measured resonant frequency and the quality factor
of the loaded resonator cavity, the complex relative permittivity
of the material placed in the resonator can be estimated To
this aim, one can rearrange equation (7) in order to solve the
inverse problem associated with the loaded resonator cavity
[6]

(Amnk
2 +Bmn(k)k+Cmn)(αn) = ν(εd)Emn(αn),

n,m = 1, 2, . . . , N , (15)

which is a generalized eigenvalue problem for the unknown
ν(εd). The sample holder Dh as an additional material may
be required to keep the material to be measured in a desired
position for some cases. In this case, a new matrix F has to
been inserted in (15) resulting in

(Amnk
2 +Bmn(k)k+Cmn − F )(αn) = ν(εd)Emn(αn),

n,m = 1, 2, . . . , N , (16)

where

Fmn = ν(εs)

∫
Dh

(∇×Hm) · (∇×Hn) dV. (17)

Here, εs is the known relative permittivity of the sample holder
Dh. The generalized Schur decomposition can be applied
to (15) or (16) in order to estimate the complex relative
permittivity εd of the sample under test.

III. RESULTS

The dimensions of the cavity are as follows: radius R =
45mm, height H = 13.7mm, radius of the filling hole
Rh = 6mm, and thickness of the walls t = 6mm. The con-
ductivity of the lossy walls was σ = 2.47× 107 S/m (brass).
The measured complex resonant frequency was formed by
the measured resonant frequency fr and the unloaded quality
factor Qu,

fm ≈ fr

(
1 + j

1

2Qu

)
. (18)

Firstly, the direct algorithm was tested. To this aim, a
cylindrical teflon plug with radius 6mm was used to load
the cavity resonator. The magnetic field was expanded in
TM0mn modes. The number of basis functions was N = 500.
TM010 and TM020 modes were excited by coupling structures.
Therefore, the TM01 mode was the most influential one inside
the circular filling hole. Zw was chosen as the wave impedance
of the TM01 mode of the artificial circular waveguide. The
field associated to the TM01 mode inside the hole falls to 1/e
in 2.52mm for the operating frequency f = 2.55GHz. Fig.
2 and Fig. 3 demonstrate the amplitude of the electric field
distributions at ϕ = 0 by neglecting the effect of the filling
and considering it, respectively. In Table I, a comparison of
the measured parameters and the computed parameters by the
proposed method is given for two different cases: 1) neglecting
the effect of the hole and 2) considering it. From Table I, Fig.
2 and Fig. 3, it can be seen that the filling hole has an effect
on the field distribution and, therefore, also on the complex

resonant frequency. One can also conclude that the method is
quite capable of determining the complex resonant frequencies
accurately.

Figure 2. Electric field distribution of the cavity loaded with teflon for the
case the effect of the filling hole is not considered.

Figure 3. Electric field distribution of the cavity loaded with teflon for the
case the effect of the filling hole is considered.

In order to test the inversion algorithm, the measured
resonant frequencies of the cavity resonator loaded with teflon
were used to estimate the complex relative permittivity of
teflon by taking the effect of the hole and neglecting it. Table
II shows that the method is capable of determining material
parameters accurately when the effect of the filling hole is
considered. Finally, the temperature dependent measurement
of compressed and bound silicon carbide powder is given in
Table III. The measurement setup is shown in Fig. 4 where
two additional materials with known parameters were placed

Proceedings of the "2013 International Symposium on Electromagnetic Theory"

728 



Table I
THE MEASURED AND COMPUTED COMPLEX RESONANT FREQUENCIES NEGLECTING AND CONSIDERING THE EFFECT OF THE FILLING HOLE

mode loading measurement proposed method neglecting the filling hole proposed method considering the filling hole

Re{fm} Im{fm} Re{fc} Im{fc} relative error Re{fc} Im{fc} relative error

TM010
empty 2.565e9Hz 3.644e5Hz 2.551e9Hz 3.493e5Hz 0.55% 2.558e9Hz 3.502e5Hz 0.28%
teflon 2.497e9Hz 3.816e5Hz 2.462e9Hz 3.536e5Hz 1.40% 2.483e9Hz 3.531e5Hz 0.56%

TM020
empty 5.916e9Hz 4.820e5Hz 5.856e9Hz 5.293e5Hz 1.06% 5.886e9Hz 5.261e5Hz 0.56%
teflon 5.580e9Hz 3.678e5Hz 5.439e9Hz 5.686e5Hz 2.53% 5.533e9Hz 5.438e5Hz 0.85%

Table II
THE ESTIMATED RELATIVE PERMITTIVIES OF TEFLON MATERIAL BY NEGLECTING AND CONSIDERING THE EFFECT OF THE FILLING HOLE

frequency material reference proposed method neglecting the filling hole proposed method considering the filling hole

Re{εr} − Im{εr} Re{εr} − Im{εr} relative error Re{εr} − Im{εr} relative error

2.55GHz teflon 2.100 0.00042 2.011 0.00011 4.22% 2.021 0.00016 3.74%
5.86GHz teflon 2.100 0.00042 1.751 0.00059 16.6% 2.078 0.00091 1.05%

Table III
THE ESTIMATED RELATIVE PERMITTIVITY OF COMPRESSED AND BOUND SILICON CARBIDE POWDER

Averaged Temperature ◦C 20 115 209 285 354 461 580

Uncertainty in Temperature ◦C 0 15 24 35 56 72 101
Re{εr} 8.00 9.91 9.04 10.14 11.65 12.38 11.36
− Im{εr} 2.10 0.94 0.49 0.55 0.61 0.91 1.01

inside the cavity for support and thermal insulation. Since
the compressed and bound silicon carbide powder is a lossy
material, the support material is used to reduce the height of
the sample inside the cavity in order to keep the quality factor
relatively high. The sample was heated to a certain temperature
and then removed from the oven. Then, it was placed inside
the cavity through the filling hole and measured immediately.

Figure 4. Temperature-dependent measurement setup.

IV. CONCLUSION

The direct and inverse problems associated with a cavity
resonator loaded with isotropic, dielectric material were ad-
dressed. The effects of the filling hole and the conductive
walls were examined by modelling them as inhomogeneous
impedance boundary conditions. The problem was formulated
by using the variational expression inherited from the vector

wave equation for the magnetic field. The magnetic field was
expanded into eigenmodes of the empty cavity in order to
reduce the problem into matrix form. Given an initial guess,
the resulting nonlinear eigenvalue problem was approximated
by a quadratic eigenvalue problem. This problem in turn was
solved iteratively to determine the complex resonant frequen-
cies of the cavity. In the case the complex wavenumber was
measured and the complex relative permittivity of the loaded
material was to be found, the inverse problem was considered.
It was solved by using the generalized Schur decomposition.
The computed parameters were compared with the measured
parameters. Also, the inverse algorithm was tested against
the measured data in order to estimate the complex relative
permittivity of teflon. Promising results were reported.
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