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Abstract—The electrodynamic characteristics of a circular loop
antenna located on the surface of an open waveguide in the form
of an axially magnetized plasma column are studied using the
integral equation method. The current distribution and the input
impedance of the antenna excited by a time-harmonic external
voltage are obtained in closed form for the case where the plasma
inside the column is resonant.

I. INTRODUCTION

The characteristics of loop antennas immersed in a mag-
netoplasma have been studied extensively in many works
(see, e.g., [1] and references therein). In the past decade,
enhanced interest has been shown in the characteristics of
antennas operated in the presence of magnetic-field-aligned
cylindrical plasma structures capable of guiding the excited
electromagnetic waves [2]. Recently, the problem of a loop
antenna located on the surface of a plasma column in free
space has been solved in the case of a nonresonant magneto-
plasma inside the column [3]. In this work, we consider a strip
loop antenna located on the surface of a circular column filled
with a resonant magnetoplasma. By resonant magnetoplasma,
we mean a cold collisionless magnetized plasma in which the
refractive index of one of the characteristic waves tends to
infinity at a certain angle between the wave vector and an
external dc magnetic field [2].

II. FORMULATION OF THE PROBLEM AND BASIC
EQUATIONS

Consider an antenna having the form of an infinitesimally
thin, perfectly conducting narrow strip of half-width d coiled
into a circular loop of radius a (d � a). The antenna is
located coaxially on the surface of a uniform circular plasma
column placed in free space and aligned with an external dc
magnetic field B0 (see Fig. 1) which is parallel to the z
axis of a cylindrical coordinate system (ρ, φ, z). The medium

inside the column is described by a general dielectric tensor
with the following nonzero elements: ερρ = εφφ = ε0ε,
ερφ = −εφρ = −iε0g, and εzz = ε0η (here, ε0 is the
permittivity of free space). The elements ε, g, and η of the
plasma dielectric tensor are functions of the angular frequency
ω, and expressions for them can be found elsewhere [2].
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Fig. 1. Geometry of the problem.

The antenna is excited by a time-harmonic (∼ exp(iωt))
voltage which creates an electric field with the only nonzero
component Eext

φ in a narrow angular interval (gap) |φ−φ0| ≤
∆� π on the surface of the strip (i.e., at ρ = a and |z| < d):

Eext
φ (a, φ, z) =

V0

2a∆
[U(φ− φ0 + ∆)− U(φ− φ0 −∆)]

× [U(z + d)− U(z − d)] . (1)

Here, V0 is an amplitude of the given voltage, U is a Heaviside
function, and ∆ is the angular half-width of the gap centered
at φ = φ0. The excitation field Eext

φ is represented as

Eext
φ =

∞∑
m=−∞

Am exp(−imφ), (2)

where

Am =
V0

2πa

sin(m∆)

m∆
exp(imφ0). (3)
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The density J of the electric current excited on the antenna
by the field (1) can be sought as

J = φ0I(φ, z)δ(ρ− a), (4)

where |z| < d, δ is a Dirac function, and I(φ, z) is the surface
current density which admits the following representation:

I(φ, z) =
∞∑

m=−∞
Im(z) exp(−imφ). (5)

To find I(φ, z), we express the azimuthal (Eφ) and longi-
tudinal (Ez) components of the electric field excited by the
current (4) in terms of unknown quantities Im(z) and then
use the boundary conditions on the surface of the plasma
column (ρ = a and −∞ < z < ∞) along with the boundary
conditions on the antenna surface (ρ = a and |z| < d):

Eφ + Eext
φ = 0, Ez = 0. (6)

The described procedure makes it possible to obtain integral
equations for the above-mentioned unknown quantities and
then reduce the problem of the antenna current distribution
to solving the corresponding integral equations.

The field excited by the current with the surface density of
Eq. (5) can be obtained in a standard way [2]. To do this, the
fields inside and outside the plasma column are expressed in
terms of cylindrical functions with the appropriate arguments.
On the column surface, the fields should satisfy the boundary
conditions, which consist in the continuity of the tangential
components Eφ, Ez , and Hφ at the boundary ρ = a. As for
the Hz component, it is continuous at this boundary if |z| > d,
and undergoes a jump corresponding to the surface current
(4) if |z| < d. As a result, omitting some algebra, we get
the following expressions for the azimuthal and longitudinal
components of the antenna-excited electric field at ρ = a:[

Eφ(a, φ, z)
Ez(a, φ, z)

]
=

∞∑
m=−∞

exp(−imφ)

×
∫ d

−d

[
Km(z − z′)
km(z − z′)

]
Im(z′)dz′. (7)

Here,

Km(ζ) =
∑
n

2πa

Nm,n
E2
φ;m,n(a) exp (−ik0pm,n|ζ|)

+
ik0

2π

∫ ∞
0

q

p(q)

2∑
l=1

2∑
k=1

B
(l)
mk

∆
(l)
m

[
Jm+1(Qk)

+αkm
Jm(Qk)

Qk

]
exp(−ik0p(q)|ζ|)dq, (8)

km(ζ) = sgn ζ

{∑
n

2πa

Nm,n
Eφ;m,n(a)Ez;m,n(a)

×exp (−ik0pm,n|ζ|)+
i

2πaη

∫ ∞
0

q

p(q)

2∑
l=1

2∑
k=1

B
(l)
mk

∆
(l)
m

×nkQkJm(Qk)exp(−ik0p(q)|ζ|)dq
}
, (9)

where Jm is a Bessel function of the first kind of order
m, k0 = ω/c is the wave number in free space, Eφ;m,n(ρ)
and Ez;m,n(ρ) are functions describing the distributions over
the transverse coordinate ρ of the azimuthal and longitudinal
electric-field components of eigenmodes that are guided by
the column and have the azimuthal and radial indices m and
n, respectively (m = 0,±1,±2, ... and n = 1, 2, ...), Nm,n
are the norms of the eigenmodes, pm,n are the eigenmode
propagation constants normalized to k0, and p(q) = (1−q2)1/2

is the normalized propagation constant of the characteristic
wave of free space for the transverse wave number q = k⊥/k0

(it is assumed that Im p(q) < 0). Expressions for the fields and
norms of the eigenmodes supported by a magnetized plasma
column as well as their dispersion properties are discussed in
[4]. Other quantities in Eqs. (8) and (9) are written as

B
(l)
mk = −(−1)kZ0

k0a

QkJm(Qk)

[
ηnk−vĴ

(k−v)
m H(l)

m

+ηp
m

Q2
J (k−v)
m − nk−v

(
H(l)
m

)2
+ p2m

2

Q4
nk−v

]
,

∆(l)
m = (−1)l

{
n2

[
ηJ (1)

m Ĵ (2)
m −

(
J (1)
m + ηĴ (2)

m

)
H(l)
m

]
−n1

[
ηĴ (1)

m J (2)
m −

(
J (2)
m +ηĴ (1)

m

)
H(l)
m

]
+(n2 − n1)

[(
H(l)
m

)2
− p2m

2

Q4

]
+ηp

m

Q2

[
J (1)
m − J (2)

m + Ĵ (1)
m − Ĵ (2)

m

]}
,

nk = − ε

p(q)g

[
p2(q) + q2

k(p(q)) +
g2

ε
− ε
]
,

Qk = k0aqk(p(q)), l = 1, 2, k = 1, 2, v = (−1)k, (10)

where

J (k)
m =

Jm+1(Qk)

QkJm(Qk)
+m

αk
Q2
k

, Ĵ (k)
m =

Jm+1(Qk)

QkJm(Qk)
−m βk

Q2
k

,

H(l)
m =

H
(l)
m+1(Q)

QH
(l)
m (Q)

− m

Q2
, Q = k0aq,

αk = −1 +
p2(q) + q2

k(p(q))− ε
g

, βk = 1 +
p(q)

nk
,

qk(p) =
1√
2

{
ε− g2

ε
+ η −

(η
ε

+ 1
)
p2

−
(η
ε
− 1
)

(−1)k
[(
p2 − P 2

b

) (
p2 − P 2

c

)]1/2}1/2

,

Pb,c =

{
ε− (η + ε)

g2

(η − ε)2
+

2χb,c
(η − ε)2

×
[
εg2η

(
g2 − (η − ε)2

)]1/2}1/2

, (11)

χb = −χc = −1, Z0 is the impedance of free space, and
H

(1)
m and H

(2)
m are Hankel functions of the first and second

kinds, respectively. In the above formulas, q1 and q2 are
the transverse wave numbers of two characteristic waves of
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a magnetoplasma for p = p(q). The propagation constants
p = pm,n of eigenmodes of the plasma column are found as
roots of the equation ∆

(2)
m (p) = 0.

Using the boundary conditions (6) for the tangential compo-
nents of the electric field on the antenna surface and allowing
for Eqs. (2), (3), and (7), we can obtain the integral equations∫ d

−d

[
Km(z − z′)
km(z − z′)

]
Im(z′)dz′ =

[
−Am

0

]
(12)

for the complex amplitudes of the angular harmonics Im(z)
of the surface current density, where |z| < d.

The forthcoming analysis is determined by whether the
plasma inside the column is resonant or nonresonant, in which
cases either the condition sgn ε 6= sgn η or the condition
sgn ε = sgn η holds. In this paper, we restrict ourselves to
consideration of a resonant magnetoplasma in the case where
ε > 0 and η < 0, which is of interest for many important
applications [2].

III. SOLUTION OF THE INTEGRAL EQUATIONS

The behavior of solutions of the obtained integral equations
is determined by the properties of their kernels. We can
represent the kernels Km(ζ) and km(ζ) as the sums of singular
(K(s)

m and k(s)
m ) and regular (K(r)

m and k(r)
m ) parts. The singular

parts tend to infinity for ζ → 0, whereas the regular parts
remain finite in this limit and can be taken at ζ = 0 if the
antenna is so narrow that the following conditions take place:

d� a, d� a|η/ε|1/2, k0d� 1,

(k0d)2 max{|ε|, |g|, |η|} � 1. (13)

The singular part of Km(ζ) can be written as

K(s)
m (ζ) = iZ0

(
−k

2
0a

2

∫ ∞
0

J2
m+1(k0aq) exp(−k0q|ζ|)dq

+
m2

πk0a2

1

|εη|

∫ ∞
0

I2
m(k0aq)

qUm(q)
exp
(
−k0

√
ε

|η|
q|ζ|
)
dq

)
+

∞∑
n=n∗

2πa

Nm,n
E2
φ;m,n(a) exp (−ik0pm,n|ζ|) . (14)

Here, Um(q) = I2
m+1(k0aq) + |εη|−1I2

m(k0aq), where Im
is a modified Bessel function of the first kind of order
m. The quantity n∗ in Eq. (14) is a certain large positive
integer such the propagation constants of eigenmodes with
the radial indices n > n∗ can be approximated as pm,n =

µ
(m+1)
n

√
−ε/η ξ(k0a)−1, where µ(m+1)

n is the nth zero of the
Bessel function Jm+1 and ξ is a certain quantity depending
on η. It can be shown that in the case |η| � 1, ξ ' 1.

Under conditions (13), the singular part (14) of the kernel
Km(ζ) in the limit ζ → 0 can be represented in the form

K(s)
m (ζ) = −iZ0

k0

2π

( 1

αm
ln
|ζ|
2a
− γm

)
, (15)

where

αm = i(k0a)2εeff [m2 − i(k0a)2εeff ]−1 ,

εeff =

√
|εη|(|εη|+ 1)

2i
√
|εη| − 4(|εη|+ 1)

. (16)

It can similarly be shown under the same conditions that
k

(s)
m (ζ) = mCm/ζ for ζ → 0 and k

(r)
m (0) = 0. The

coefficients γm and Cm in the above formulas are independent
of ζ and are found numerically for each m.

The derived representations of the kernels make it possible
to obtain the following solution for Im(z), which satisfies both
equations in (12) simultaneously:

Im(z) =
2i

Z0k0

√
d2 − z2

Amαm
ln (4a/d)− Sm

, (17)

where Sm = αm[−γm + 2πiK
(r)
m (0)/(Z0k0)]. Substituting

(17) into (5) yields I(φ, z). Integrating I(φ, z) over z between
−d and d, we obtain the total antenna current IΣ(φ).

Note that in a general case, the summation over m in the
current representation can be made only numerically. A closed-
form expression for the current distribution can be derived if
the strip is so narrow that the inequality ln(4a/d) � |Sm| is
valid. Then, under the additional condition d � 2a∆ � a,
we can neglect the quantities Sm and make steps similar to
those performed in [1]. As a result, we deduce

IΣ(φ) = − iV0πh

Z0k0 ln(4a/d)

cos[(π − φ+ φ0)ha]

sin(πha)
, (18)

where 0 ≤ φ− φ0 ≤ π and h = k0(1 + i)
√
εeff/2 .

IV. NUMERICAL RESULTS

Using the above-described approach, we have calculated the
current distribution and the input impedance of the antenna
for some cases of interest. Calculations have been performed
for the following values of parameters which can easily be
realized under laboratory conditions: the plasma density inside
the column is equal to N = 1013 cm−3, the external dc
magnetic field B0 = 800 G, and the angular frequency
ω = 1.7 × 108 s−1. The chosen values correspond to the
case of a resonant plasma, for which the diagonal elements of
the dielectric tensor have the opposite signs: ε = 1.62 × 102

and η = −1.1 × 106. It is assumed that the midpoint of the
region to which the given voltage is supplied has the azimuthal
coordinate φ0 = 0, the antenna radius a coinciding with the
column radius is equal to a = 2.5 cm, d/a = 0.02, and
∆ = 0.05 rad.

The behavior of the current distribution is notably deter-
mined by the presence of eigenmodes guided by the plasma
column, which can support an infinite number of propagating
eigenmodes whose contribution to the kernels of Eq. (12) is
singular. As an example, Fig. 2 shows the components of
the fields Em,n(ρ) and Hm,n(ρ) of an eigenmode with the
azimuthal index m = 1 and the radial index n = 18 as
functions of the radial coordinate ρ for the above-mentioned
parameters of the column. The relative propagation constant
of this eigenmode amounts to pm,n = 52.26. It is seen that the
mode fields has both large- and fine-scale oscillations over the
radius. It is interesting to mention that the number of fine-scale
oscillations increases with increasing radial index.

The absolute value |IΣ(φ)|, normalized to its maximum
|IΣmax|, and the phase θ(φ) = arctan(Im IΣ(φ)/Re IΣ(φ))
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Fig. 2. Fields (a) Em,n(ρ) and (b) Hm,n(ρ) of an eigenmode with the
indices m = 1 and n = 18 for N = 1013 cm−3, B0 = 800 G, ω =
1.7 × 108 s−1, and a = 2.5 cm.

of the antenna current are shown in Fig. 3 as functions of the
angle φ. In addition, Fig. 3 shows the current distribution of
the same antenna located in a homogeneous magnetoplasma
the parameters of which coincide with those of the plasma
medium inside the column. It is evident that in this case,
the dependence |IΣ(φ)/IΣmax| for the antenna located on
the surface of the plasma column qualitatively resembles the
corresponding dependence for a loop antenna in a homoge-
neous magnetoplasma. If the antenna of the same radius were
located in free space, it would have a quasi-uniform current
distribution. The presence of the plasma column evidently
leads to an essentially different current distribution of the
antenna.

The input impedance Z = V0/IΣ(φ0) = R + iX of the
antenna depends on the parameters of the problem in a fairly
complex way. For the parameters chosen above, it amounts to
Z = (8.36+i7.95) Ω, and the value of the radiation resistance
R is almost completely determined by the eigenmodes of the
plasma waveguide.

V. CONCLUSION

In this paper, we have obtained the solution to the problem
of the current distribution and the input impedance of a strip
loop antenna located on the surface of an axially magnetized
plasma column in free space and operated in the resonant
frequency band of a magnetoplasma. The found solution
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Fig. 3. Normalized amplitude (a) and phase (b) of the antenna current as
functions of the angle φ if the antenna is located on the surface of a plasma
column (solid line) and in a homogeneous magnetoplasma (dashed line) for
a = 2.5 cm, d/a = 0.02, ∆ = 0.05 rad, φ0 = 0, N = 1013 cm−3,
B0 = 800 G, and ω = 1.7 × 108 s−1.

describes the distribution of the surface-current density both
along and across the strip and makes it possible to study the
electrodynamic characteristics of such an antenna as functions
of its parameters as well as the parameters of the plasma
column.
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