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Abstract—After defining a continuum using the rigorous
spatial-dispersion equations for the macroscopic, fundamental

Floquet modal fields of 3D periodic metamaterial arrays, bound-
ary conditions are derived for electric quadrupolar continua.

I. INTRODUCTION

Intuitively, it seems plausible that a three-dimensional (3D)

periodic array of electrically isolated inclusions behaves as an

electromagnetic continuum obeying Maxwellian macroscopic

equations if the variation of the macroscopic fields is small

over the distance separating the inclusions. In this paper, we

use the equations of a recently developed representation for

spatially dispersive periodic metamaterial arrays [1] to obtain

sufficient conditions for the arrays to be treated as electro-

magnetic continua. We then derive the interface boundary

conditions for continua with significant dipolar and electric

quadrupolar polarization densities.

Maxwell’s equations for the macroscopic fields of the

fundamental Floquet mode of a periodic array excited by an

applied plane-wave electric current density Ja(β, ω)ei(β·r−ωt)

can be written as [1]

iβ ×E(β, ω) − iωB(β, ω) = 0 (1a)

iβ ×H(β, ω) + iωD(β, ω) = Ja(β, ω) (1b)

with the constitutive relations

D(β, ω) ≡ ε0E(β, ω) + Pe
ρ (β, ω) + iβ · Q

e
(β, ω)/2 (2a)

H(β, ω) ≡ B(β, ω)/µ0 − Me(β, ω) − M(β, ω) (2b)

where the macroscopic electric-dipole, magnetic-dipole, and

electric-quadrupole polarization densities are given by integra-

tions of the induced microscopic electric-current/polarization

density over the volume of the unit cell of the array

Pe
ρ (β, ω) =

1

d3

∫

Vc

ρp
ω(r)rce

−iβ·rd3r (3a)

Me(β, ω) =
1

2d3

∫

Vc

rc × J
p
ω(r)e−iβ·rd3r (3b)

Q
e
(β, ω) = −

1

iωd3

∫

Vc

[J p
ω(r)rc + rcJ

p
ω(r)]e−iβ·rd3r . (3c)

and rc is the position vector measured from a fixed point

within the unit cell of integration. The macroscopic (β, ω)

fields of the fundamental Floquet mode are determined by

integrating the corresponding microscopic frequency-domain

fields weighted by the factor e−iβ·r over the volume of the

unit cell; e.g., for the electric field

E(β, ω) =
1

d3

∫

Vc

Eω(r)e−iβ·rd3r (4)

where d is the sidelength (separation distance or lattice con-

stant) of a cubic unit cell. The periodicity of the array requires

that the fields and induced source densities satisfy Floquet

modal expansions; e.g., the electric field can be expressed as

Eω(r) = eiβ·r

+(∞,∞,∞)
∑

(l,m,n)=−(∞,∞,∞)

Elmn(β, ω)eiblmn·r (5)

and similarly for the magnetic field and source densities. For

simplicity, we shall assume a cubic array with lattice spacing

d such that

blmn =
2πl

d
x̂ +

2πm

d
ŷ +

2πn

d
ẑ (6)

where (x̂, ŷ, ẑ) are the unit vectors in the (x, y, z) principal

directions of the 3D cubic array. Since b000 = 0, the

(l, m, n) = (0, 0, 0) term in (5) with spatial propagation vector

β is called the fundamental Floquet mode. Throughout we

omit the subscripts 000 on the fundamental Floquet-mode

fields and source densities. The applied plane-wave current

spectrum Ja(β, ω) for all real β can be used to represent an

arbitrary localized applied current density J
a
ω(r) through the

Fourier transform, and similarly for the other fields.

II. DEFINITION OF AN ELECTROMAGNETIC CONTINUUM

An array of electrically isolated inclusions can be treated as

an electromagnetic “continuum” if two conditions are satisfied:

1) |βd| is small enough (generally |βd| � 1) that the ordi-

nary averages (that is, averages without the e−iβ·r weighting

factor) of the microscopic fields and sources over the unit cell

approximately equal the fields and sources of the fundamental

Floquet mode; e.g., for the electric field in (5)

1

d3

∫

Vc

Eω(r)d3r =
1

d3

∫

Vc

[

eiβ·r

+(∞,∞,∞)
∑

(l,m,n)=−(∞,∞,∞)

Elmn(β, ω)eiblmn·r
]

d3r

≈ E(β, ω)eiβ·r0 (7)
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where r0 is the center of the unit cell, and similarly for

the microscopic magnetic field, Bω(r), and the microscopic

sources, P
e

ρω(r) = ρp
ω(r)rc , M

e
ω(r) = rc×J

p
ω(r)/2, Mω(r),

and Q
e

ω(r) = −[J p
ω(r)rc + rcJ

p
ω(r)]/(iω).

2) |k0d| = |ωd/c| is small enough (generally |k0d| � 1)
that the wave numbers βeig(ω) of the “propagating” source-

free eigenmodes of the array (that would be excited by discon-

tinuities or terminations of the array) satisfy the requirement

of condition 1) of small enough |βeigd| that the fundamental

Floquet modes dominate. This second continuum condition

implies that the quasi-static fields of the electrically separated

inclusions dominate over the length of several or more unit

cells. On lossy arrays, the βeig of the propagating eigenmodes

can be complex with small imaginary parts for small values of

|k0d|. In addition, even for small values of |k0d|, there may be

“evanescent” complex eigenmodes on lossy and lossless arrays

with |Im(βeigd)| > 1. However, these evanescent waves are

irrelevant for defining a continuum because they decay to a

negligible value in “transition layers” a small fraction of a

wavelength from discontinuities or terminations of an array.

If the above conditions 1) and 2) are met, ordinary averages

over electrically small (quasi-static) macroscopic volumes ∆V
within the array, but outside any transition layers of discon-

tinuities or terminations of the array, and containing many

inclusions will produce physically meaningful averages at each

value of β and ω satisfying the small |βd| and small |k0d|
criteria of conditions 1) and 2). Specifically, we can write

Eave(r, t) ≈ E(β, ω)ei(β·r−ωt) (8)

and similarly for the other macroscopic fields and source

densities. That is, the ordinary macroscopic-volume averages

at each β and ω within the small spatial and temporal

bandwidths defining the continuum are given approximately

by the fundamental Floquet mode. The constitutive parameters

of a continuum, in particular the permittivity and permeability

dyadics, can be spatially dispersive (as well as temporally

dispersive).

With the help of the polarizations defined in (3), we will

show that the continuum can be characterized by ordinary mul-

tipole moments with ordinary electric-dipole, magnetic-dipole,

and electric-quadrupole moments dominating at sufficiently

small values of |βd|. Consider the integrations in (3) over the

unit cell in which the coordinate-system origin of the position

vector r is located, and then let rc = r. With |βd| sufficiently

< 1, the approximation e−iβ·r ≈ 1− iβ · r holds for this unit

cell and, thus, to first order in |βd| (3) yields

Pe
ρ (β, ω) = Pe

0(β, ω) − iβ ·Q
e

0(β, ω) + O(|βd|2) (9a)

Me(β, ω)+M(β, ω)=Me
0(β, ω)+M0(β, ω)+O(|βd|) (9b)

where the ordinary (continuum) electric and magnetic dipole-

moment densities, and the ordinary electric quadrupole-

moment density in the unit cell containing the origin of the

position vector r are given by

Pe
0(β, ω) =

1

d3

∫

Vc

ρp
ω(r)rd3r =

1

d3

∫

Vc

[ρω(r)r + Pω(r)]d3r

(10a)

Me
0(β, ω)=

1

2d3

∫

Vc

r×J
p
ω(r)d3r, M0(β, ω)=

1

d3

∫

Vc

Mω(r)d3r

(10b)

Q
e

0(β, ω)=
i

ωd3

∫

Vc

[J p
ω(r)r+rJ p

ω(r)]d3r=
1

d3

∫

Vc

ρp
ω(r)rrd3r.

(10c)

Multiplying equations (1)–(2) by ei(β·r−ωt), then inserting

the expressions in (8)–(10) for the fields and polarization

densities into these equations, and lastly taking the four-fold

(β, ω) Fourier transform shows that to first order in |βd| the

macroscopic fields of the continuum array satisfy the following

Maxwell macroscopic space-time continuum equations

∇× Eave(r, t) +
∂Bave(r, t)

∂t
= 0 (11a)

∇× Have(r, t)−
∂Dave(r, t)

∂t
= Ja,ave(r, t) (11b)

∇ · Bave(r, t) = 0 (11c)

∇ · Dave(r, t) = ρa,ave(r, t) (11d)

with

Dave(r, t) ≈ ε0Eave(r, t) + P
e
0ave(r, t) −

1

2
∇ · Q

e

0ave(r, t)

(12a)

Have(r, t) ≈ Bave(r, t)/µ0 − M
e
0ave(r, t) − M0ave(r, t)

(12b)

for Ja,ave(r, t) within the spatial and temporal band-

widths (∆β and ∆ω) of the largest sufficiently small |βd|
and |k0d| for the approximations in (7)–(8) to hold and

all multipole polarization densities of higher order than

P
e
0ave(r, t), M

e
0ave(r, t) + M0ave(r, t), and Q

e

0ave(r, t)
(the ordinary electric-dipole, magnetic-dipole, and electric

quadrupole space-time polarization densities) to be negligible,

where from (8) we have

Eave(r, t) =

+∆ω
∫

−∆ω

+∆βz
∫

−∆βz

+∆βy
∫

−∆βy

+∆βx
∫

−∆βx

E(β, ω)ei(β·r−ωt)d3βdω

(13)

and similarly for the other space-time averages. If the mul-

tipole polarization densities of higher order than P
e
0ave(r, t),

M
e
0ave(r, t)+M0ave(r, t), and Q

e

0ave(r, t) are not all negli-

gible over the continuum bandwidths (∆β and ∆ω), then the

integrals in (3) could be further expanded as in (9) beyond

the first-order |βd| terms, similarly to what is done in [2], to

obtain ordinary multipole densities in (12) of higher order than

the dipolar and electric quadrupolar polarization densities.

With the expressions in (9)–(10), the total current is given

to first order in β as

Jtot(β, ω) = −iωPe
0(β, ω) − ωβ · Q

e

0(β, ω)/2 (14)

+iβ × [Me
0(β, ω) + M0(β, ω)] + O(|βd|2) .
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Because the microscopic current and charge densities, J
p
ω(r)

and ρp
ω(r), induced on polarizable or perfectly conducting

inclusions are absolutely integrable (so that all the multipole-

moment densities are finite), we see from (9a) that for |βd|
small enough the electric quadrupole-moment density con-

tributes negligibly to the electric polarization and both the

electric and magnetic polarizations in (2) become equal to

the ordinary electric and magnetic dipole moments per unit-

cell volume. Higher order multipole moments do not have to

be taken into account in order to determine the macroscopic

permittivity for |βd| sufficiently small (unless the electric

dipole polarization Pe
0(β, ω) is negligible for |βd| less than

some finite value).

However, both the electric quadrupole-moment density and

magnetic dipole-moment density contribute to order β in (14)

as β → 0 and thus generally both have to be taken into

account (at higher temporal frequencies ω) in determining

the macroscopic permeability as β → 0 [3, p. 61], [4].

However, as β → 0, the permeability does not explicitly reveal

the contribution to the fields from the electric-quadrupole

polarization for an applied magnetic field. Nonetheless, for

|k0d| = |ωd/c| sufficiently small, we see from (14) that

the contribution of the electric quadrupole-moment density

becomes negligible compared to that of a nonzero magnetic

dipole-moment density.

In summary, as both |βd| and |k0d| become small, the

enforced and free-space wavelengths become much larger than

the separation distance d between the inclusions, and the

anisotropic formulation for the fundamental Floquet mode

approaches that of an anisotropic continuum with ordinary

electric-dipole, magnetic-dipole, and electric quadrupole po-

larization densities. In addition, we have shown that a meta-

material array with inclusions having nonzero electric and/or

magnetic dipole moments at low spatial and temporal fre-

quencies (that is, for |βd| and |k0d| sufficiently small) can

be represented by an anisotropic dipolar continuum with neg-

ligible higher-order multipole-moment densities. Since most

molecules can be modeled by polarizable or perfectly con-

ducting inclusions, this result also holds for most natural

materials with electrically isolated molecules at sufficiently

low spatial and temporal frequencies [5, p. 111]. The fields

of the dipolar continuum satisfy the space-time Maxwellian

equations in (11)–(12) with the electric quadrupole density

Q
e

0ave(r, t) = 0.

III. BOUNDARY CONDITIONS FOR

ELECTRIC-QUADRUPOLAR CONTINUA

The Maxwellian macroscopic space-time continuum equa-

tions in (11)–(12) hold for applied current excitations with

spatial and temporal bandwidths (∆β and ∆ω) determined

by small enough |βd| and |k0d|, respectively, for the approx-

imations in (7)–(10) to be sufficiently accurate that ordinary

macroscopic averaging applies over macroscopic volumes ∆V
containing many inclusions. The equations (11)–(12) were

derived for infinite periodic arrays of separated inclusions

with small enough |βd| and |k0d| that all multipole-moment

polarization densities of higher order than ordinary dipolar and

electric quadrupolar polarization densities are negligible. In

this section, we want to terminate the infinite array in a surface

S that is effectively planar in the sense that any subsurface Sp

of S extending a distance less than several lattice distances d
is approximately planar. The surface S is assumed to be an

interface between the array and free space or another array

and we want to determine the boundary conditions across this

interface.

The termination of the array(s) by the surface S introduces

strong spatial variations of the fields and induced sources in

the vicinity of S that invalidates the approximations in (7) and

(8). Although averages of the microscopic fields and induced

sources can still be performed using macroscopic volumes

∆V throughout all space, the resulting macroscopic fields

will not generally satisfy (11)–(12) in a transition layer [6,

p. 271] containing the interface surface S. For the original

infinite continuum arrays characterized by |∆βd| � 1 and

|∆k0d| = ∆ωd/c � 1, the thickness δ of the transition layer

is much smaller than the free-space and 2π/|β| wavelengths;

see discussion of evanescent eigenmodes in the previous

section. The effect of this transition layer can be represented

in equations (11) by additional transition-layer electric and

magnetic current and charge densities on the right-hand sides

of the equations in (11). For example, (11a) and (11b) become

∇× Eave(r, t) +
∂Bave(r, t)

∂t
= −Kδ(r, t) (15a)

∇×Have(r, t)−
∂Dave(r, t)

∂t
= Ja,ave(r, t)+Jδ(r, t) (15b)

where Jδ(r, t) and Kδ(r, t) are transition-layer macroscopic

electric and magnetic current densities, respectively, that are

zero everywhere except within the transition layer of thick-

ness δ. These equations in (15), along with the constitutive

equations in (12), now hold throughout all space. The two

divergence equations associated with (15) can be obtained by

taking the divergence of the equations in (15). Note from (12a)

that P
e
ave(r, t) = P

e
0ave(r, t) − ∇ · Q

e

0ave(r, t)/2 effectively

contains a delta function across the thin transition layer if

the electric quadrupole density is not negligible and differs in

value on either side of the transition layer; specifically

P
e
ave(r, t) = P

e
0ave(r, t) (16)

−
1

2

[

∇ · Q
e

0ave(r, t)
]

dfr
−

1

2
n̂ · (Q

e2

0ave − Q
e1

0ave)δ(n)

in which n̂ is the unit normal to the surface S pointing from

the side “1” to side “2” of the transition layer, and δ(n) is the

delta function in the normal coordinate n. The subscript “dfr”

means “delta function removed” from the divergence of the

electric quadrupole dyadic, so that
[

∇ ·Q
e

0ave(r, t)
]

dfr
can be

discontinuous but otherwise nonsingular across the thin tran-

sition layer. We are assuming that there are no effective delta

functions in the macroscopic dipolar and electric-quadrupolar

polarization densities, P
e
0ave(r, t), M

e
0ave(r, t)+M0ave(r, t),
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and Q
e

0ave(r, t), represented by Jδ(r, t) and Kδ(r, t) within

the thin transition layer.1

Boundary conditions on the tangential components of the

macroscopic Eave and Have fields and on the normal com-

ponents of the macroscopic Dave and Bave fields across the

transition layer can be determined by applying the integral

forms of (15) and the corresponding divergence equations to

thin rectangular closed curves and closed surfaces (pillboxes)

with their long dimensions of length ` on either side of

the transition layer so that their short sides are of width

δ � ` (taking into account the effective delta functions in

∇ · Q
e

0ave across the transition layer). Although ` � δ, it is

assumed that ` is short enough that the macroscopic fields

and sources along the length of ` do not change appreciably.

This determination of boundary conditions for the equations

in (15) with the constitutive relations in (12) and (16) has

been done in [7] but without the transition current densities,

Jδ(r, t) and Kδ(r, t). However, the additional integrals over

Jδ(r, t) and Kδ(r, t) become insignificant for δ sufficiently

small, or equivalently, for |∆βd| and |∆k0d| sufficiently

small, provided, as discussed in Footnote 1, that Jδ(r, t)
and Kδ(r, t) do not contain delta functions. Thus, we can

apply the boundary conditions derived in [7]2 with the surface

polarization Pδ in [7] replaced by −n̂ · (Q
e2
0ave − Q

e1
0ave)/2

given in (16), to get

E
2s
ave − E

1s
ave ≈

1

2ε0
∇s

[

n̂ · (Q
e2

0ave − Q
e1

0ave) · n̂
]

(17a)

H
2s
ave−H

1s
ave ≈

1

2
n̂×

[

∂(n̂ · Q
e2

0ave)
s/∂t − ∂(n̂ · Q

e1

0ave)
s/∂t

]

(17b)

D2n
ave −D1n

ave ≈
1

2
∇s ·

[

(n̂ ·Q
e2

0ave)
s − (n̂ · Q

e1

0ave)
s
]

(17c)

B2n
ave −B1n

ave ≈ 0 (17d)

where the superscripts “s” and “n” refer to vector compo-

nents tangential and normal to the surface S, respectively,

and we note that Q
e

0ave(r, t) is a symmetric dyadic because

Q
e

0(β, ω) is a symmetric dyadic. These boundary conditions

show that the change in electric quadrupole density across the

thin transition layer produces discontinuities in the tangential

components of Eave and Have and in the normal component

of Dave. They agree with the boundary conditions of Raab and

De Lange [4, eqs. (6.69)–(6.74)] if a term ε−1
0 ∂Qzz/∂z/2 is

added to the right-hand side of [4, eq. (6.71)]. In a private

communication, Raab and De Lange have confirmed the

necessity of this added term. Our expressions in (17) have

also been confirmed in an unpublished independent derivation

by M.G. Silveirinha using transverse averaging and assuming

no delta-function contributions, as discussed in Footnote 1,

from the effective polarizations in the transition layer [8].

1Delta-functions δ(n) in the polarizations as represented by Jδ(r, t) and
Kδ(r, t) may exist if these polarizations are proportional to the derivatives
of the fields, that is, if they display significant spatial dispersion. In that case,

the boundary conditions in (17) would have to be modified.
2The field symbols on the left-hand sides of equations (13), (15), and

(16) in [7] should be boldface, and the ∇ symbol one line below equation

(12) of [7] should be ∇s.

The results of several analyses and simulations of periodic

arrays, for example those in [8]–[10], indicate that the effect of

the boundary layer becomes negligible for spatial and temporal

bandwidths, |∆βd| and |∆k0d|, less than about 0.1. Thus,

one would also expect that the boundary conditions in (17)

are reliable approximations for |∆βd| and |∆k0d| less than

about 0.1. If, as discussed in the previous section, these spatial

and temporal bandwidths are small enough for the electric

quadrupole density to be negligible compared to the dipolar

polarization densities, then the electric quadrupole terms in

(17) can be neglected and (17) predicts the usual continuity of

the tangential Eave and Have fields and the normal Dave field

(as well as the normal Bave field) across the thin transition

layer. Lastly, we mention the need for more analysis and

simulations to investigate the possibility of additional delta

functions, as discussed in Footnote 1, in the polarizations

of more strongly spatially dispersive arrays and to determine

additional boundary conditions (ABCs) for these arrays [11].
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