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Abstract—This paper considers the electromagnetic scattering
problem of surface-relief grating with period modulation, and
presents a formulation based on the coordinate transforma-
tion method (C-method). The C-method is originally developed
to analyze the plane-wave scattering from perfectly periodic
structures, and uses the pseudo-periodic property of the fields.
Since the structure under consideration is not perfectly periodic,
the fields are not pseudo-periodic and the C-method cannot
be directly applied. This paper introduces the pseudo-periodic
Fourier transform to convert the fields in imperfectly periodic
structures to pseudo-periodic ones, and the C-method becomes
then applicable.

I. INTRODUCTION

When a plane wave illuminates a perfectly periodic struc-
ture, the Floquet theorem asserts that the scattered fields are
pseudo-periodic (namely, each field component is a product of
a periodic function and an exponential phase factor) and the
analysis region can be reduced to one periodicity cell. How-
ever, in case of structure in which the periodicity is collapsed
even if locally, the Floquet theorem is no longer applicable
and the computation has been mainly performed with the finite
difference time-domain method, the finite element method, the
time-domain beam propagation method, the method of the
fictitious sources, etc., in which the analysis region has to
cover whole scatterers under consideration.

This paper deals with the electromagnetic scattering from
a surface-relief grating with period modulation and shows a
spectral-domain formulation based on the differential method
of Chandezon et al. (C-method) [1] and the pseudo-periodic
Fourier transform (PPFT) [2]. The PPFT converts an arbitrary
function into a pseudo-periodic one and the transformed
function can be expressed in the generalized Fourier series
expansion [3]. The generalized Fourier coefficients, which are
functions of the transform parameter, are approximated by
introducing a discretization, and then the conventional formu-
lations for perfectly periodic structures based on the Floquet
theorem (such as the C-method) can be applied to analyze
the scattering problem of imperfectly periodic structures. The
transformed function has also a periodic property in terms of
the transform parameter, which is related to the wavenumber,
and the analysis region in the spectral domain is reduced to the
Brillouin zone. Therefore, the discretization scheme in terms
of the transform parameter can be considered in the Brillouin
zone.

II. SETTINGS OF THE PROBLEM

The present paper considers the scattering problem of elec-
tromagnetic fields with a time-dependence exp(−i ω t) from
surface-relief grating, in which structural period is locally
changed. Figure 1 shows an example of the structures under
consideration. The structure is uniform in the z-direction and
the y-axis is perpendicular to the periodicity direction though
the periodicity is not perfect. The equation of the corrugated
surface is expressed by y = g(x). Let gp(x) be a smooth
periodic function with the period d and ∆(x) be a function
that has nonzero value only at a1 < x < a2. Then the surface
profile function g(x) is given by

g(x) = gp

(∫ x

0

d

d+∆(η)
dη

)
. (1)

The local period of g(x) is d +∆(x), and changes from the
original period d in a1 < x < a2. The surrounding region
y > g(x) is filled with a homogeneous and isotropic medium
with the permittivity εs and the permeability µs, and the
substrate region y < g(x) is also filled with a homogeneous
and isotropic medium described by the permittivity εc and
the permeability µc. The regions y > g(x) and y < g(x)
are specified by s and c, respectively, and the wavenumber
in each region is denoted by kr = ω

√
εr µr for r = s, c.

The electromagnetic fields are uniform in the z-direction and
two-dimensional scattering problem is considered here. Two
fundamental polarizations are expressed by TE and TM, in

x

y

y = g(x)

a1 a2

Modulation Area

Fig. 1. Surface-relief grating with period modulation
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which the electric and the magnetic fields are respectively par-
allel to the z-axis. The incident field is supposed to illuminate
the corrugated surface from the region s and there exists no
source inside the region c.

III. FIELD EXPRESSIONS IN HOMOGENEOUS REGIONS

First, we consider the field in the TE-polarization. From
Maxwell’s curl equations and the constitutive relations, the
filed in the region r (r = s, c) satisfy the following relations:

∂

∂y
Ez(x, y) = i ω µrHx(x, y) (2)

∂

∂x
Ez(x, y) = −i ω µrHy(x, y) (3)

∂

∂x
Hy(x, y)−

∂

∂y
Hx(x, y) = −i ω εr Ez(x, y). (4)

We introduce a curvilinear coordinate system O-uvz, which is
related to the original coordinate system O-xyz by continuous
transformation equations:

u =

∫ x

0

d

d+∆(η)
dη (5)

v = y − g(x) (6)

where ∆(η) is supposed to provide onto and one-to-one
correspondence between x and u. Using the chain rule, the
differential operators in terms of x and y are transformed as

∂

∂x
= (1 + f(u))

(
∂

∂u
− ġp(u)

∂

∂v

)
(7)

∂

∂y
=

∂

∂v
(8)

with

f(u) =
∂u

∂x
− 1 (9)

ġp(u) =
d gp(u)

du
. (10)

Then, Eqs. (2)–(4) are transformed as follows:

∂

∂v
Ez(u, v) = i ω µrHx(u, v) (11)

(1 + f(u))

(
∂

∂u
− ġp(u)

∂

∂v

)
Ez(u, v) = −i ω µrHy(u, v)

(12)

(1 + f(u))

(
∂

∂u
− ġp(u)

∂

∂v

)
Hy(u, v)−

∂

∂v
Hx(u, v)

= −i ω εr Ez(u, v). (13)

Here, we introduce the PPFT. Let φ(u) be a function of
u and d be a positive real constant. Then the PPFT and its
inverse transform are formally defined by

φ(u; ξ) =
∞∑

m=−∞
φ(u−md) eimd ξ (14)

φ(u) =
1

kd

∫ kd/2

−kd/2

φ(u; ξ) dξ (15)

where ξ is the transform parameter and kd = 2π/d. The
transformed functions have pseudo-periodic property in terms
of u: f(u−md; ξ) = f(u; ξ) exp(−imd ξ) for any integer m,
and also have periodic property in terms of ξ: f(u; ξ−mkd) =
f(u; ξ). We use the period of gp(x) for the positive real
constant d for the PPFT. Then, kd becomes the inverse lattice
constant and the periodicity cell of the transformed function
gives the Brillouin zone. Applying the PPFT to Eqs. (11)–(13)
and using the formula shown in [2], we obtain the following
relations:

∂

∂v
Ez(u; ξ, v) = i ω µrHx(u; ξ, v) (16)(
∂

∂u
− ġp(u)

∂

∂v

)
Ez(u; ξ, v)

+
1

kd

∫ kd/2

−kd/2

f(u; ξ−ξ′)
(
∂

∂u
− ġp(u)

∂

∂v

)
Ez(u; ξ

′, v) dξ′

= −i ω µrHy(u; ξ, v) (17)(
∂

∂u
− ġp(u)

∂

∂v

)
Hy(u; ξ, v)

+
1

kd

∫ kd/2

−kd/2

f(u; ξ−ξ′)
(
∂

∂u
− ġp(u)

∂

∂v

)
Hy(u; ξ

′, v) dξ′

− ∂

∂v
Hx(u; ξ, v) = −i ω εr Ez(u; ξ, v). (18)

Since the transformed functions have pseudo-periodic property
in terms of u, the transformed fields are expressed in the
generalized Fourier series [3]. For example, the z-component
of electric field is approximately written as

Ez(u; ξ, v) =
N∑

n=−N

Ez,n(ξ, v) e
i αn(ξ)u (19)

αn(ξ) = ξ + nkd (20)

where N denotes the truncation order and Ez,n(ξ, v) are the
nth-order coefficients. To treat the coefficients systematically,
we introduce (2N + 1)×1 column matrices; for example, the
coefficients of Ez,n(ξ, v) are expressed by a column matrix
ez(ξ, v) in such a way that its nth-components are given by
Ez,n(ξ, v). Then Eqs. (16)–(18) yield the following relations:

∂

∂v
ez(ξ, v) = i ω µr hx(ξ, v) (21)(
iX(ξ)− [[ġp]]

∂

∂v

)
ez(ξ, v)

+
1

kd

∫ kd/2

−kd/2

[[f ]](ξ − ξ′)

(
iX(ξ′)− [[ġp]]

∂

∂v

)
ez(ξ

′, v) dξ′

= −i ω µr hy(ξ, v) (22)(
iX(ξ)− [[ġp]]

∂

∂v

)
hy(ξ, v)

+
1

kd

∫ kd/2

−kd/2

[[f ]](ξ − ξ′)

(
iX(ξ′)− [[ġp]]

∂

∂v

)
hy(ξ

′, v) dξ′

− ∂

∂v
hx(ξ, v) = −i ω εr ez(ξ, v) (23)
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with (
[[f ]](ξ)

)
n,m

=
1

d

∫ ∞

−∞
f(u) e−i αn−m(ξ)u du (24)

([[ġp]])n,m =
1

d

∫ d

0

ġp(u) e
−i(n−m)kd u du (25)(

X(ξ)
)
n,m

= δn,m αn(ξ) (26)

where the symbol δn,m stands for Kronecker’s delta.
Considering the periodicity in terms of ξ, Eqs. (21)–(23)

have to be satisfied for arbitrary ξ ∈ (−kd/2, kd/2]. However,
we take L sample points inside the Brillouin zone and assume
that Eqs. (21)–(23) are satisfied at these sample points. Also
the integrations in Eqs. (22) and (23) are approximated by
an appropriate numerical integration scheme using the same
sample points. Let {ξl}Ll=1 and {wl}Ll=1 be the sample points
and the weights chosen by a numerical integration scheme.
Then we may obtain the following relations:

d

dv
ẽz(v) = i ω µr h̃x(v) (27)(
C̃1 + C̃2

d

dv

)
ẽz(v) = −ω µr h̃y(v) (28)(

C̃1 + C̃2
d

dv

)
h̃y(v) + i

d

dv
h̃x(v) = −ω εr ẽz(v) (29)

with

ẽz(v) =

ez(ξ1, v)...
ez(ξL, v)

 (30)

C̃1 = F̃ X̃ (31)

C̃2 = i F̃ [[[ġp]]] (32)

F̃ = I +


w1

kd
[[f ]](ξ1 − ξ1) · · · wL

kd
[[f ]](ξ1 − ξL)

...
. . .

...
w1

kd
[[f ]](ξL − ξ1) · · · wL

kd
[[f ]](ξL − ξL)

 (33)

X̃ =

X(ξ1) 0
. . .

0 X(ξL)

 (34)

[[[ġp]]] =

[[ġp]] 0
. . .

0 [[ġp]]

 (35)

where the definition of the column matrices h̃x(v) and h̃x(v)
are similar to ẽz(v). After a simple calculation, Eqs. (27)–(29)
yield the following coupled differential-equation set:(

ẽz(v)
−i d

dv ẽz(v)

)
= −i d

dv
M r

(
ẽz(v)

−i d
dv ẽz(v)

)
(36)

with

M r =

(
i D̃r

(
C̃1 C̃2 + C̃2 C̃1

)
−D̃r

(
C̃

2

2 − I
)

I 0

)
(37)

D̃r =
(
kr

2 I − C̃
2

1

)−1

(38)

where I denotes the identity matrix and the superscript “−1”
stands for the matrix inverse. The general solution to the cou-
pled differential-equation set (36) can be obtained by solving
the eigenvalue-eigenvector problems because the matrix of
coefficients M r is constant. The 2L (2N + 1) eigenvalues
can be divided into two sets, each containing L (2N + 1)
eigenvalues. The first set contains the negative real eigenvalues
and the complex eigenvalues with positive imaginary parts,
and the second set contains those with the opposite signs.
We denote the reciprocals of the eigenvalues of M r by
{ηr,n}2L(2N+1)

n=1 , in which {ηr,n}L(2N+1)
n=1 correspond to the

first set and {ηr,n}2L(2N+1)
n=L(2N+1)+1 correspond to the second

set. Let pr,n denote the eigenvector of M r associating with
the eigenvalue 1/ηr,n. Then the matrix for diagonalization is
constructed as(

P r,11 P r,12

P r,21 P r,22

)
=
(
pr,1 · · · pr,2L(2N+1)

)
, (39)

and the general solution to the coupled differential-equation
set (36) is written in the following form:

ẽz(v) = P r,11 a
(−)
e,r (v) + P r,12 a

(+)
e,r (v) (40)

d

dv
ẽz(v) = iP r,21 a

(−)
e,r (v) + iP r,22 a

(+)
e,r (v) (41)

where the column matrices a(−)
f,r (v) and a

(+)
f,r (v) are the

amplitudes of the eigenmodes propagating in the negative and
the positive v-directions, respectively. The relation between
the modal amplitudes at v = v′ and v = v′′ is given by(

a
(−)
e,r (v′)

a
(+)
e,r (v′)

)
= U r(v − v′′)

(
a
(−)
e,r (v′′)

a
(+)
e,r (v′′)

)
(42)

(U r(v))n,m = δn,m ei ηr,n v (43)

For the TM-polarization, following the same process,
we may understand that h̃z(v) satisfies the same coupled
differential-equation set with Eq. (36). Therefore, the general
solution is written as follows

h̃z(v) = P r,11 a
(−)
h,r (v) + P r,12 a

(+)
h,r (v) (44)

d

dv
h̃z(v) = iP r,21 a

(−)
h,r (v) + iP r,22 a

(+)
h,r (v) (45)

with (
a
(−)
h,r (v

′)

a
(+)
h,r (v

′)

)
= U r(v − v′′)

(
a
(−)
h,r (v

′′)

a
(+)
h,r (v

′′)

)
. (46)

IV. SCATTERING-MATRIX

The general solutions separately obtained in the regions
s and c can be matched at the grating surface v = 0
by using the boundary conditions, which are given by the
continuities of the tangential components of the fields. For the
TE-polarization, the covariant component of the magnetic field
in terms of u is given by Ht(u, v) = Hx(u, v)+ġ(u)Hy(u, v),
which gives the tangential component of the magnetic field
on the grating surface v = 0. From Eqs. (27), (28), (40), and
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(41), the generalized Fourier coefficients of Ez(u; ξl, v) and
Ht(u; ξl, v) are expressed in the following form:(

ẽz(v)

h̃t(v)

)
=

(
P r,11 P r,12

Qe,r,21 Qe,r,22

)(
a
(−)
e,r (v)

a
(+)
e,r (v)

)
(47)

with

Qe,r,2q =
i

ω µr

[
C̃2 C̃1P r,1q + i

(
C̃

2

2 − I
)
P r,2q

]
(48)

for q = 1, 2. On the other hand, the tangential components
of the fields on the grating surface v = 0 are Hz(x, y) and
Et(x, y) = Ex(x, y) + ġ(x)Ey(x, y) for the TE-polarization.
The generalized Fourier coefficients of Hz(u; ξl, v) and
Et(u; ξl, v) are expressed in the following form:(
h̃z(v)
ẽt(v)

)
=

(
P r,11 P r,12

Qh,r,21 Qh,r,22

)(
a
(−)
h,r (v)

a
(+)
h,r (v)

)
(49)

Qh,r,2q = − i

ω εr

[
C̃2 C̃1P r,1q + i

(
C̃

2

2 − I
)
P r,2q

]
. (50)

Since the incident field illuminates the corrugated surface
from the region s, the boundary conditions at v = 0 provide
the following relation:(

P s,11 P s,12

Qf,s,21 Qf,s,22

)(
a
(−)
f,s (+0)

a
(+)
f,s (+0)

)
=

(
P c,11

Qf,c,21

)
a
(−)
f,c (−0) (51)

for f = e, h. Then, the relation between the amplitudes of the
incoming and outgoing fields is derived as(

a
(+)
f,s (+0)

a
(−)
f,c (−0)

)
=

(
Sf,11

Sf,21

)
a
(−)
f,s (+0), (52)

where the scattering matrices are given by

Sf,11 = −
(
P c,11Q

−1
f,c,21Qf,s,22 − P s,12

)−1

(
P c,11Q

−1
f,c,21Qf,s,21 − P s,11

)
(53)

Sf,21 = Q−1
f,c,21

(
Qf,s,21 +Qf,s,22 Sf,11

)
. (54)

Here, we denote the Ez(x, y) for the TE-polarization and
the Hz(x, y) for the TM-polarization by ψ(x, y) to express
both polarizations simultaneously, and the incident field is
written as ψ(i)(x, y). The PPFT is applied to the incident field
in the O-uvz coordinate system, and the transformed field is
expressed in the generalized Fourier series. Then, the nth-order
coefficient is obtained by

ψ(i)
n (ξl, v) =

1

d

∫ ∞

−∞
ψ(i)(u, v) e−i αn(ξl)u du. (55)

If L (2N + 1)×2L (2N + 1) matrices Rs,1 is defined by the
inversion of the diagonalization matrix given in Eq. (39) as(

Rs,1

Rs,2

)
=

(
P s,11 P s,12

P s,21 P s,22

)−1

, (56)

where the column matrix a(−)
f,c (+0), which contains the modal

amplitudes of the incident field, are given by

a
(−)
f,s (v) = Rs,1

(
ψ̃(i)(v)

−i d
dv ψ̃

(i)(v)

)
. (57)

This means that we may obtain a(−)
f,s (+0) from Eq. (57) for

a known incident field, and a(+)
f,c (+0) and a(−)

f,s (−0), which
contains the modal amplitudes of the scattered field, are
computed by Eq. (52).

V. CONCLUSION

This paper presents a formulation of the electromagnetic
scattering from the surface-relief grating, in which the struc-
tural period is locally changed. The present formulation is
based on the C-method with the help of the PPFT, and the
discretization for the numerical computation is introduced on
the transform parameter ξ, which is related to the wavenumber.
The main problem on the spectral-domain analysis is generally
summarized to the discretization scheme on the wavenumber
space. In the present formulation, the discretization scheme
can be considered only inside the Brillouin zone owing to the
PPFT.
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