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Abstract—In this paper, the forward scattering sum rule is used
to investigate scattering and absorption of electromagnetic energy
in periodic metamaterials. The sum rule is valid for arbitrary
structures composed of linear and passive materials and it shows
that the all spectrum interaction between the structure and the
electromagnetic field is proportional to the polarizability of the
structure. The theoretical results are illustrated with numerical
examples for nano-spheres.

1. Introduction

The forward scattering sum rule shows that the all-spectrum
interaction between the electromagnetic field and an object is
proportional to the (static) polarizability of the object [1], [2].
This identity is useful since it provides physical insight of the
total dynamic interaction over a bandwidth from a relatively
simple static problem. It also gives physical limitations on
the total cross section bandwidth product expressed in the
polarizability of the object. The sum rule has recently been
used to derive an antenna identity and several physical bounds
on antennas [3]. It has also been used to show bounds on
metamaterial scatterers [4] and extraordinary transmission [5].

Here, the forward scattering sum rule is investigated for
structures periodic in a plane but finite in the normal direc-
tion [6]. This version of the optical theorem shows that the
scattered and absorbed power from an incident plane wave
is proportional to Imh(k), where h(k) = i2

(
1 − T (k)

)
A

is a Herglotz function [7], A denotes the cross section area
of the unit cell, T the co-polarized part of the lowest order
transmission coefficient, and k the wavenumber. The low-
frequency asymptotic expansion of h(k) is used to derive the
forward scattering sum rule according to the general procedure
in [7]. The derivation is based on the assumptions that the
periodic structure does not support global currents in the low-
frequency limit and that the microstructure is made of linear,
passive, and time-translational invariant materials. The results
are illustrated with numerical simulations for the scattering
and absorption of single and periodic arrays of gold and silver
nano-spheres [8], [9].

2. Optical theorem for periodic structures

The optical theorem for periodic structures is based on
energy conservation [6]. The incident power per unit cell is
Pi = A|E0|2/(2η0), where A is the cross section area of
the unit cell, E(i)(r) = E0e

ikk̂·r the incident field, k the
wavenumber, and η0 the free space impedance. Let Pr denote

the reflected power. The corresponding transmitted power,
Pt = |T |2Pi + Pt1, is decomposed into the contributions
from the co-polarized part of the lowest order mode, |T |2Pi,
and from the remaining modes, Pt1. The scattered power,
Ps, is the sum of the reflected power, Pr, and the power
in the scattered part of the transmitted field. This scattered
power consists of the power in the co-polarized forward
scattered field, i.e. the difference between the total field and
the incident field, |1 − T |2Pi, and transmitted power in the
remaining modes, Pt1, i.e., Ps = Pr + |1− T |2Pi + Pt1. The
absorbed power, Pa, is the difference between the incident
and the sum of the reflected and transmitted powers, i.e.,
Pa = Pi − Pr − Pt = Pi − Pr − |T |2Pi − Pt1. The sum
of the absorbed and scattered powers is

Ptot = Pa + Ps

= Pi − Pr − |T |2Pi − Pt1 + Pr + |1− T |2Pi + Pt1

= 2Re{1− T}Pi (1)

which after normalization with the incident power flux,
|E0|2/(2η0), gives the total (or extinction) cross section

σtot = σa + σs = 2Re{1− T}A. (2)

This is the optical theorem for the periodic structure.

3. Forward scattering sum rule

Causality and passivity of the transmission coefficient T (k)
is used to define a Herglotz function and construct sum rules.
Causality implies that the transmission coefficient T (k) is
holomorphic in k for Im k > 0 and passivity implies that
it is bounded in magnitude by unity, i.e., |T | ≤ 1. We use the
form of the total cross section (2) to construct the Herglotz
function

h(k) = i2
(
1−T (k)

)
A such that σtot(k) = Im{h(k)}. (3)

This is a Herglotz function [7], [10], i.e., h(k) is holomorphic
and Im{h(k)} ≥ 0 for Im k > 0.

Sum rules are equations stating that the sum or integral of
a certain quantity has a given value. Many sum rules can be
derived from Herglotz functions [7], where the integrand is
the imaginary part of the Herglotz function weighted by some
function of k. Moreover, the integral is related to the low- and
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high frequency asymptotic expansions of the function. In the
case (3), we have the low- and high-frequency expansion

h(k) ∼

{
kγ = k(ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê)) as k → 0

O(1) as k →∞,
(4)

where γe and γm denote the electric and magnetic polariz-
ability dyadics, respectively and E(i) = êE0. The pertinent
sum rule is [7]

2

π

∫ ∞
0

σtot(k; k̂, ê)

k2
dk = ê·γe ·ê+(k̂×ê)·γm ·(k̂×ê), (5)

where σtot = Imh is used and ê is the linear polarization (real
valued). It is convenient to rewrite the sum rule as a function
of the wavelength, λ = 2π/k, that transforms the sum rule (5)
into
1

π2

∫ ∞
0

σtot(λ; k̂, ê) dλ = ê·γe ·ê+(k̂×ê)·γm ·(k̂×ê), (6)

where the symbol σtot(λ; k̂, ê) is reused as the total cross
section as a function of the wavelength. It is observed that (5)
and (6) are identical to the forward scattering sum rule with
σtot being the total (extinction) cross section for an object in
free space [1], [2], [11], [12].

4. Numerical example

We illustrate the sum rule (6) with gold (Au) and silver (Ag)
spheres of radius a = 60nm and the permittivity models [13],
see Fig. 1. The total cross sections normalized with the
geometrical cross sections are depicted on top and bottom in
Fig. 1 for single spheres [2] and periodic arrays of spheres,
respectively. The polarizabilities in the right hand side of (6)
are identical for all (non-magnetic) metals. Consequently, the
areas under the curves σtot are the same for the gold and
silver objects. The (plasmonic) resonances can hence only shift
the interaction between different wavelengths but not change
the all spectrum interaction. The polarizability is γ = 4πa3

for single spheres giving 4 · 60π2 ≈ 2369 ≈ 3 · 790 as the
area under the curves σtot/πa2 and the corresponding area
of the dashed rectangle in the left part of Fig. 1, note the x-
axis in λ/ nm. The corresponding polarizability is computed
to γ ≈ 1.2·4πa3 for the periodic structure with unit cell length
`x = `y = 3a using Comsol multiphysics [6] giving the area
2842.

5. Conclusion

The forward scattering sum rule shows that the all spec-
trum interaction between metallic objects and electromagnetic
waves is independent of the specific metal and only depends on
the shape of the objects. The results are illustrated numerically
for gold and silver nano-spheres.
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Fig. 1. Total cross sections for gold (Au) and silver (Ag) spheres with
radius a = 60nm. Top: single sphere. Bottom: periodic array of spheres
with spacing (unit cell length) `x = `y = 3a.
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