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Abstract—To find the electrostatic solution of a radially uni-
axially anisotropic sphere in a constant external field is fairly
straightforward. However, the resulting quasistatic polarizability
exhibits many interesting properties including singularities and
dubious emergent losses. By removing the origin and adding
small losses, it turns out that the solution is valid in a certain
limiting sense. Without puncturing the sphere, the potential is
singular at the origin if the permittivity is indefinite, and for
certain ranges of parameter values infinitesimally small losses
give rise to significant effective losses.

I. INTRODUCTION

The static solution involving a radially uniaxial (RU) sphere
has been considered in several publications [1]–[5] and also the
Mie-scattering from an RU sphere has been solved [6]. In this
presentation we continue the work by carefully analyzing the
validity of the electrostatic solution when the permittivity com-
ponents are allowed to be negative. Especially in the indefinite
case, when the two permittivity components have opposite
signs, the solution contains very interesting properties, which
at first sight appear totally nonsensical. However, the simple
but dubious solution appears to be valid as the result of a
limiting process involving infinitesimally small losses and a
vanishing perfectly conducting core.

II. QUASISTATIC POTENTIAL AND POLARIZABILITY

A. RU Sphere

Consider a sphere with radius a and the radially uniaxial
permittivity

ε = ε0
[
εrad ur ur + εtan

(
uθuθ + uϕuϕ

)]
(1)

centered at the origin of a spherical coordinate-system (r, θ, ϕ).
The external field is oriented along the z-axis, i.e., the external
potential is

φ0(r, θ) = −U0
r
a

cos θ. (2)

The solution must be independent of ϕ, since neither the
geometry nor the excitation depends on ϕ. The θ -dependence,
both inside and outside the sphere, is of the form Pn(cos θ),
where Pn is the Legendre polynomial and n is a non-negative
integer. However, due to the orthogonality of the Legendre
polynomials and the form of the excitation, only P1(cos θ) =
cos θ is needed in the solution.

The potential outside the sphere, r > a, must approach φ0
as r →∞, and so the solution must be of the form

φout(r, θ) = U0
α

3

( r
a

)−2
cos θ −U0

r
a

cos θ, (3)

where the strength of the dipolar term is expressed using the
normalized polarizability α.

The potential in a radially uniaxial medium satisfies the
(generalized) Laplace equation

∇ ·
(
ε · ∇φ

)
= 0, (4)

whose general solution can easily be found using separation of
variables in spherical coordinates. The angular part contains
the usual spherical harmonics, which reduce into Legendre
polynomials Pn(cos θ) in the ϕ-independent case, but the
radial part is more peculiar. In the present case, where only
the solutions with cos θ angular dependence is excited, we can
express the general potential solution in the form

φ(r, θ) =
[

A
( r

a

)ν
+ B

( r
a

)−ν−1
]

cos θ, (5)

where
ν =

1
2

(
−1+

√
1+ 8εtan/εrad

)
. (6)

The potential inside the sphere, r < a, should be finite at the
origin, and so we choose

φin(r, θ) = A
( r

a

)ν
cos θ. (7)

Enforcing the interface conditions

φin = φout, εrad
∂φin

∂r
=
∂φout

∂r
, when r = a, (8)

we get the normalized polarizability in the familiar form

α = 3
εeff − 1
εeff + 2

, (9)

where the effective permittivity is

εeff = εradν =
εrad

2

(
−1+

√
1+ 8εtan/εrad

)
, (10)

and the amplitude of the internal potential is

A =
−3U0

εeff + 2
. (11)

Since the normalized polarizability (9) is exactly the same as
for a homogeneous sphere with effective permittivity εeff, this
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Fig. 1. The polarizability of an ideal RU sphere is well defined in the first and
third quadrants of the εrad εtan-plane. The potential at the origin is singular if
εrad and εtan have opposite signs, and in the yellow regions the potential and
polarizability are complex. Also shown are the lines where the polarizability
vanishes (blue lines in the upper half-plane) and where the polarizability is
singular (red lines in the lower half-plane).

solution can also be interpreted as an internal homogeniza-
tion [7].

The validity of this solution depends on the anisotropy ratio
εtan/εrad of the RU sphere. If the ratio is real, we can separate
three distinct cases based on the exponent ν given by (6):

1) If εtan/εrad > 0, the potential is finite at the origin, and
there does not seem to be any problem with the solution.

2) If −1/8 < εtan/εrad < 0, the square root in (6) is real,
but the exponent ν < 0, and so the potential (7) is
singular at the origin. The polarizability (9) does still
give a real and possibly reasonable value.

3) If εtan/εrad < −1/8, the exponent ν is complex with a
negative real part, and so the potential is singular and
oscillatory at the origin. The polarizability is finite but
complex.

These regions are visualized in Fig. 1, which also shows
the locations where the polarizability vanishes

εtan =
εrad + 1

2εrad
, εrad < −2, εrad > 0, (12)

and where the polarizability is singular

εtan =
2− εrad

εrad
, εrad < 0, εrad > 4. (13)

Notice that the RU sphere can be invisible while the potential
is singular at the origin at the same time, according to (12)
with εrad < −2.

B. Punctured RU Sphere

Due to symmetry considerations, the potential should be
zero at the origin. Thus, it seems reasonable to remove the
singularity at the origin by inserting a grounded perfectly
conducting (PEC) sphere with radius b < a at the origin and
thereafter letting b/a→ 0.

The potential outside the RU sphere, r > a, is still of the
form (3) and the potential inside, b < r < a, is of the form (5).
The normalized polarizability α and the coefficients A and B

can be solved by enforcing the boundary condition φin = 0 at
r = b and the interface conditions (8).

After some straightforward but somewhat lengthy calcula-
tions, we can express the polarizability in the familiar form

α = 3
εeff − 1
εeff + 2

, (14)

where the effective permittivity is

εeff =
εrad

2

−1+
√
·
1+

( b
a

)√·
1−

( b
a

)√·
 , (15)

where
√
· =

√
1+ 8εtan/εrad = 2ν + 1. (16)

The coefficients A and B for the potential (5) inside the
punctured RU sphere are

A =
−3U0

(εeff + 2)
(

1−
( b

a

)√·) , B = −
(

b
a

)√·
A. (17)

This solution for the punctured RU sphere is real and finite
for any b > 0 and εrad, εtan ∈ R. The imaginary parts cancel
out exactly, although it is not immediately obvious from the
above formulas.

If the square root (16) is real, i.e., εtan/εrad > −1/8, the
limit

lim
b→0

(
b
a

)√·
= 0 (18)

is well defined and we get the RU solution when the PEC core
vanishes. Thus, the RU solution can be considered valid also
in the region −1/8 < εrad/εtan < 0.

If εrad/εtan < −1/8, the square root (16) is purely imaginary
and the limit does not exist since(

b
a

)± jβ

= cos
(
β ln

b
a

)
± j sin

(
β ln

b
a

)
, (19)

which oscillates without reaching a limit when b/a→ 0.
Fig. 2 shows an example of the striking differences in the

polarizability of an RU sphere with and without a very small
PEC-core. The results should agree in the limit b/a→ 0 if the
solution is unique, and this is clearly true for εrad/εtan > 0 and
εrad/εtan < −8. For permittivity components falling into the
complex (yellow) region in Fig. 1, we either get singularities or
a complex (lossy) polarizability from real (lossless) material.
Neither solution seems reasonable, but the ambiguity is very
similar to the branch cut or unlimited number of singularities
that arise in geometries containing sharp corners and certain
ranges of negative permittivity [8]–[11].

C. Losses

Adding losses makes the limit b/a → 0 well defined.
Using the time convention e+ jωt , small losses as a negative
imaginary part of either εrad and εtan (or both) ensure that the
real part of the square root (16) is nonzero, which is sufficient
to make the limit (18) vanish. Therefore, the punctured RU
result approaches the RU one as long as there are some
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Fig. 2. Polarizability α′ − jα′′ of an ideal RU sphere with εtan = 1 as a
function of εrad compared with the polarizability of a punctured RU sphere
with b/a = 10−10 (gray line).

material losses involved. This argument is valid for arbitrarily
small losses, and thus it seems that the strange complex RU
polarizability for εtan/εrad < −1/8 is valid after all. However,
the result for real permittivity components must be understood
as an approximation where the losses are infinitesimally small.

Fig. 3 shows the polarizability of a lossy RU sphere
compared with the same sphere with a very small PEC core.
Although the results coincide exactly in the limit b/a → 0,
the PEC core must be ridiculously small to numerically get
good agreement, unless the losses are large.

III. CONCLUSIONS

The normalized polarizability (9) and effective permittiv-
ity (10) of a radially uniaxial (RU) sphere are easily found,
but the results appear to be dubious at first sight when the
permittivity (1) is indefinite. The results are especially trou-
blesome in the region εtan/εrad < −1/8, where the potential
is singular and the polarizability is complex.

To get a unique and well behaved solution for all possible
parameters εtan and εrad, we assume that there are some losses
in the material and remove the singularity at the origin by
inserting a grounded PEC core. The main result is that the
potential solution and polarizability tend to the RU solution in
the limit when the core vanishes, for arbitrarily small losses.

However, the complex polarizability for real permittivity
components should be interpreted carefully. Absorption en-
hancement, instead of emergent losses, is a physically more
reasonable explanation, when very small losses in the material
can give large effective losses in the RU sphere.
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Fig. 3. The polarizability, as in Fig. 2, with losses added to the tangential
permittivity εtan = 1 − j/10. The polarizability of the punctured RU sphere
with b/a = 10−10 is again plotted using thin gray lines. Smaller b/a or larger
losses makes the agreement between the punctured and non-punctured cases
better.
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