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Abstract—Deep brain stimulation (DBS) is a neurosurgical
method of stimulating deep brain areas with electrical pulses to
treat symptoms of neurodegenerative disorders. To date in human
DBS, these pulses are commonly voltage controlled resulting
in a formation of an electrical double layer at the electrode-
tissue-interface, which influences the time-dependent voltage
response and neural activation in the proximity of the stimulated
target. The aim of this study was to investigate the effect of
uncertainties in these parameters. A probabilistic method based
on a multi-dimensional polynomial expansion in combination
with computationally efficient sparse grid integration technique
was used. The results suggested that the influence of uncertainty
in the parameters of the electrical double layer on the investigated
quantities is negligible in volume conductor models of DBS.

I. INTRODUCTION

Deep brain stimulation (DBS) is a widely employed neuro-
surgical method to treat the symptoms of motor skill disorders
such as Parkinson’s disease (PD), essential tremor and dystonia
by implanting a stimulation electrode in a group of nuclei
situated at the base of the forebrain, the basal ganglia [1].
Although the method has become a common procedure in
these clinical fields [2], the fundamental mechanisms of action
of DBS remain uncertain [3]. To date many computational
models have been developed to gain more insight into these
mechanisms. A number of these models have concentrated on
the computation of the neural activation and time-dependent
voltage response in the proximity of the stimulated target
to investigate the extent of activation in dependence of the
applied stimulation pulse. In human DBS, voltage controlled
stimulation pulses are commonly used for the treatment. In
this stimulation mode the voltage response in the proximity
of the stimulated target is not only influenced by the ma-
terial properties of brain tissue, but also by the electrode-
tissue interface at the electrode contact surface known as the
electrical double layer. The properties of this layer can be
modelled by using a constant phase element, which describes
its resistive and capacitive electrical properties. The parameters
of the constant phase element are based on an experimental
study and subject to uncertainty [4]. Current computational
models only consider one set of parameters and do not take
into account the influence of uncertainties on the solution.

The aim of this study was to investigate the sensitivity of
the time dependent voltage response and volume of tissue
activated (VTA) of a unipolar and voltage controlled DBS
electrode setup on the uncertain parameters of this double
layer. A probabilistic approach was implemented by using
a polynomial expansion known as polynomial chaos (PC) to
approximate these probabilistic quantities. The computation-
ally expensive deterministic model, which combines a finite
element volume conductor model of the human brain and a
multi-compartmental neuron model, was used to compute the
coefficients of this polynomial expansion using a sparse grid
integration technique, which resulted in an computational effi-
cient method to compute the probabilistic voltage response and
VTA compared to traditional probabilistic sampling methods
such as Monte Carlo simulations.

II. METHODS

A. Polynomial Chaos

The probabilistic voltage response and VTA are approx-
imated by a set of orthogonal polynomial basis functions
ψ(ξ) of the uniformly distributed random variables ξ =
(ξ1, . . . , ξM ) in U [−1, 1], where M is the number of inde-
pendent random model parameters. This expansion is known
as the polynomial chaos (PC) [5]. For uniformly distributed
random variables, products of Legendre Polynomials form the
optimal set of basis functions for the polynomial expansion. In
practice this expansion is truncated at a number Pout of basis
functions, resulting in the polynomial expansion

Z =

Pout∑
i=0

ciψi(ξ) . (1)

The coefficients ci are determined by projecting Z on each
basis function ψi(ξ) and exploiting its orthogonality in the
domain Ω = [−1, 1]M

ci =
1

〈ψi(ξ), ψi(ξ)〉

∫
Ω

Z(ξ)ψi(ξ)f(ξ) dξ , (2)

with the probability density function f(ξ) and i =
0, 1, . . . , Pout. The integral is evaluated numerically by using
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nested Smolyak sparse grids S(L,M) with the grid level
L = 2L+1 for L > 1, as described in [6], and traditional ten-
sor grids in combination with the one-dimensional Clenshaw-
Curtis rule [7]. The magnitude of the uncertainty is determined
by the relative standard deviation σr

σr =
σ

µ
(3)

with the mean µ and the standard deviation σ.

B. Human Brain Model

A 3D volume conductor model of the human brain based
on segmented magnetic resonance images of the digital brain
atlas, the SRI24 multi-channel brain atlas, was developed. The
model comprises (1) an ellipsoid resembling the geometry
of the brain, (2) spatial information of gray matter, white
matter, and cerebrospinal fluid, and (3) a realistic model of
the cylindrical stimulating electrode Mo. 3387 of the vendor
Medtronic. The electrode is positioned in the stimulated target
area, the subthalamic nucleus. The mesh was refined manually
at the electrode contact surfaces and the proximity of the
stimulated target area until the deviation of the total current
was below 1 %, which resulted in approximately 1.4 million
elements. The material properties of the brain tissue types were
determined from [8]. A detailed description of the model can
be found in [9].

C. Time-Dependent Voltage Response

For the computation of the time-dependent voltage re-
sponse, a hybrid method combining Fourier finite element
method (FFEM) [10] and equivalent circuit representation of
the electrical properties of the volume conductor model was
developed. In this method a common stimulation pulse used
in DBS therapy is transformed into the frequency-domain
using a fast Fourier transform (FFT), scaled and phase shifted
by the transfer function obtained from the equivalent circuit
representation of the volume conductor model at each location
of interest, and transformed back into the time-domain using
an inverse FFT. This approach has the advantage of requiring
only one FEM evaluation instead of 512 - 2,000 for the
classical FFEM to obtain the transfer function [11], [12].
The equivalent circuit representation for voltage controlled
stimulation consists out of the resistance Rt and capacitance
Ct of the volume conductor model and the electrode-tissue-
interface, which is modelled by a constant phase element
(CPA), which impedance ZCPA is given by the following
equation

ZCPA =
K

A(jω)β
(4)

with the electrode contact surface area A, the imaginary unit j,
the angular frequency ω, the coefficient K, and the exponent
β ∈ [0, 1]. Both parameters K and β were modelled as uni-
formly distributed random variables based on literature data [4]
with a relative standard deviation of 50 % and 10 % of K and
β, respectively (Table I). A quasi-static approximation of the
time-harmonic Maxwell’s equations was used to compute the

TABLE I
RANDOM MODEL PARAMETERS U [a, b] OF THE CONSTANT PHASE

ELEMENT

Parameter Boundaries Mean Uncertainty
a b

K 0.21 2.93 1.57 50%
β 0.7 1.0 0.85 10%

field distribution inside the brain model. Boundary conditions
were applied to the boundaries of the model, representing
perfect conductors at the active electrode contact (1 V) as
well as electrical ground at the bottom of the brain model
(0 V) and insulation at the remaining electrode body as well as
the exterior boundary of the model, respectively. The inactive
electrode contacts were set to a floating potential, i.e. no
net current flow crosses their surface. The finite element
software COMSOL Multiphysics 4.2a was used to perform
the deterministic computations. Iteration was stopped when
the 2-norm of the residual was below 1 · 10−6.

D. Volume of Tissue Activated

The multi-compartmental axon model developed by McIn-
tyre et al. [13] was used to determine the extent of the
volume of tissue activated surrounding the electrode. The
axons comprised 21 nodes of Ranvier and were arranged
perpendicular to the coronary plane in a rectangular 7×18 grid,
with a spacing of 0.5 mm normal and parallel to the electrode’s
central axis respectively. The model was implemented using
NEURON 7.1 in conjunction with the Python interpreter [14].
The computed time-dependent voltage response was applied
to the neuron model as an extracellular potential at each node
to compute the required threshold to elicit an action potential.
The VTA for a certain threshold was computed by integrating
the according threshold isoline using disk integration method
and subtracting the volume of the electrode geometry.

III. RESULTS

To investigate the influence of uncertainties in the parame-
ters of the electrical double layer on the voltage response and
neural activation in a volume conductor model of DBS, differ-
ent cases were defined, in which (1) the exponent β, (2) the
coefficient K, (3) the exponent β and the coefficient K were
modelled as probabilistic parameters. The influence on the
probabilistic time-dependent voltage response was determined
by computing its average RMS value at the nodes of a 4x4 grid
with 0.5 mm spacing in the proximity of the active electrode
contact in the coronary plane. The probabilistic VTA and its
relative standard deviation was computed for a stimulation
amplitude of V = −1 V.

To ensure the accuracy of the computed probabilistic quan-
tities, the convergence of the relative error of their variances
was determined. The results showed a decreased convergence
rate for the sparse grid integration technique, compared to
the tensor grid integration technique (Fig. 1). Nevertheless,
the relative error of the variance of the voltage response for
the sparse grid integration technique was below 0.1 % for a
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Fig. 1. (Left) Relative a posteriori error of the variance of the root mean
square (RMS) value of the time-dependent voltage response 1mm from the
active electrode contact for the random model parameters (1) β, (2) K, (3)
β+K with sparse grid integration, and (4) β+K with tensor grid integration.
(Right) Probability density function of the RMS value for the random model
parameters β + K with (1) tensor grid of level L = 5, (2) sparse grid of
level L = 3, and (3) sparse grid of level L = 5.

TABLE II
RELATIVE STANDARD DEVIATION OF THE AVERAGE RMS VALUE OF THE

TIME-DEPENDENT VOLTAGE RESPONSE IN THE PROXIMITY OF THE ACTIVE
ELECTRODE CONTACT IN THE CORONARY PLANE.

Parameter Parameter Voltage response
uncertainty [%] uncertainty [%]

β 10 0.47
K 50 0.01
β & K 10 & 50 0.66

grid level of 5, which corresponds to 65 deterministic model
evaluations, and agreed well with the probability density
function of the RMS value of the voltage response for tensor
grid integration technique, which required 1089 deterministic
model evaluations. The relative standard deviation of the
probabilistic voltage response, which was determined by its
average RMS value in the proximity of the active electrode
contact, was between 0.01 % for an uncertain parameter K and
0.66 % for the uncertain parameters β and K (Table II). These
magnitudes in the uncertainty of the voltage response are
substantially smaller than the parameter uncertainties of 10 %
for β and 50 % for K. Both parameters influenced more the
waveform shape of the time-dependent voltage response than
the amplitude (Fig. 2). The probability densities of the RMS
values of the voltage response showed a strong asymmetric
distribution. For the case, where β and K were modelled
as probabilistic parameters, a broadening of this density is
noticeable compared to the cases, where only β or K were
uncertain.

The relative standard deviation of the probabilistic VTA
remained between 1.47 % for an uncertain K and 2.68 % for
β and K modelled as random parameters (Table III). These
magnitudes in the uncertainty of the VTA are larger than the
magnitudes obtained for the probabilistic voltage response. To
ensure a relative error of the variance of the VTA of below
1 % a sparse grid of level L = 7 was required resulting in 705
necessary deterministic model evaluations.

TABLE III
MEAN VALUE µ, STANDARD DEVIATION σ, AND RELATIVE STANDARD

DEVIATION σr OF THE PROBABILISTIC VTA FOR A STIMULATION
AMPLITUDE OF V = −1V.

Parameter VTA uncertainty
µ [mm3] σ [mm3] σr [%]

β 85.53 1.80 1.57
K 85.68 1.59 1.47
β & K 85.66 2.68 1.91

IV. DISCUSSION

Based on the uncertainties in the parameters of the electri-
cal double layer, which were modelled as random uniform
variables, the probabilistic voltage response and VTA was
computed in a finite element model of the human brain
coupled with a multi-compartmental nerve fibre model. The
results suggested that the influence of uncertainties of these
parameters with the defined magnitude on the probabilistic
voltage response and VTA is negligible in volume conductor
models of DBS. Compared to a parameter uncertainty of 10 %
for the exponent β and 50 % for the coefficient K of the
constant phase element impedance ZCPA the relative standard
deviation of the voltage response and VTA was below 0.7 %
and 2.7 %, respectively. It is assumed that this minor influence
on these quantities arises from voltage divider, which is formed
by the constant phase element and the resistance as well as
capacitance of the brain tissue resulting in only a partial effect
of the uncertainties in the parameters of the electrical double
layer on the voltage response and, therefore, on the VTA
[10]. The influence of the uncertainties in the exponent β
was larger than for the coefficient K. For the case, in which
both parameters were modelled as random variables, a slight
increase in the influence of their uncertainties was noticeable.

The slower convergence rate of the sparse grid integration
technique compared to that of the tensor grid integration tech-
nique results from higher order functional dependencies in the
deterministic model equations resulting in strongly asymmetric
probability density functions [6]. These non-smooth properties
are assumed to mainly affect the convergence rate of the
sparse grid integration technique and, therefore, also show the
limitations of this method. However, the accuracy reached with
this method was sufficient to compute the desired probabilistic
quantities in a good agreement with the computationally ex-
pensive tensor grid integration technique. For the computation
of the probabilistic voltage response, 65 deterministic model
evaluations were required using sparse grids compared to 1089
using tensor grids. To ensure the defined accuracy for the
computation of the probabilistic VTA, sparse grids with a level
L = 7 were necessary resulting in 705 deterministic model
evaluations.

Despite the simplified computation of the VTA by a disk
integration method, which assumes homogeneous material
properties in the proximity of the stimulated target, the method
provides a first estimation of the sensitivity of the neural
activation on the parameters of the electrical double layer.
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Fig. 2. Representative probabilistic voltage response 1mm from the active electrode contact and the corresponding probability density of its RMS value for
(1) β, (2) K, and (3) β as well as K modelled as uncertain parameters. Mean value and probability between the 0.025 and 0.975 quantile are illustrated.

V. CONCLUSION

We proposed a computationally efficient method to inves-
tigate uncertainties in the parameters of the electrical double
layer on the probabilistic voltage response and VTA in a vol-
ume conductor model of DBS. Error bounds for the magnitude
of uncertainty in these quantities were computed. The results
suggested that the voltage response and VTA are less sensitive
to the uncertainties in the parameters of the electrical double
layer.
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