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Abstract—A network of networks, which consists of in-
terconnected sub-networks, is ubiquitous in the real world.
Methods for analyzing such networks have been proposed.
Although these analyses focused on static structures of
networks, most of real networks often change with time.
Moreover, we often observe the dynamics on each node
rather than the topology of the network. However, time-
varying interactions among nodes have not been well char-
acterized yet. Here, we propose a method to delineate time-
evolving global topological structures on networks of net-
works. The proposed method roughly estimates the time-
evolving structures, and characterizes the dynamics of their
time-evolution using a distance.

1. Introduction

The network is ubiquitous structure in the real world.
Many real networks share the structure called ”networks
of networks”, where subnetworks representing subsystems
are connected with each other. Some methods to charac-
terize the structure of the network of networks have been
proposed [1]. These methods have focused on static struc-
tures of networks. However, most of real networks often
change their structures with time. These existing methods
ignore the dynamics of time evolution of networks. More-
over, we often observe the dynamics on each node rather
than the exact topology of the network of networks. Hence,
it is required to estimate the interaction between measured
time series. Although many attempts have been made at
such a problem [2–7], it is difficult to reconstruct the exact
topology of the network from measured time series. We
proposed a new method to characterize the time evolution
of networks even if the topology of the network could not
be estimated exactly [8].

Most of networks of networks have high modularity, i.e.,
nodes are densely connected with nodes in the same sub-
network and sparsely connected with nodes in other sub-
networks. There are many indirect interactions between
nodes in such networks. Many indirect interactions result
in strong interdependencies between two time series, even
if two nodes corresponding to these time series are not di-
rectly connected. In addition, the existing methods to esti-
mate network topologies assume the sparseness of the un-
derlying network explicitly or implicitly. Hence, the es-

timation of such networks with high modularity is more
difficult than that of the ordinaly networks.

Here, we show results of numerical simulations of appli-
cation of the previously proposed method [8] to the dynam-
ics on networks of networks with high modularity. These
results revealed that the global dynamics of time evolution
of networks of networks with high modularity can also be
captured. However, higher modularity of networks of net-
works results in lower accuracy of characterization. This
result indicates that high modularity makes it difficult to
understand the global dynamics.

2. Method

In this section, we briefly describe the method which we
used [8]. We consider the system on the network of net-
works, where each of nodes obeys the certain dynamics
respectively and interacts through links each other. We as-
sume that we can simultaneously measure the dynamics at
each node. The purpose is to understand the dynamics of
the time evolution of the network of networks from such
multivariate time series.

The method to characterize the dynamics of time-
evolving networks of networks is composed of two steps.
The first step is the rough estimation of the time-evolving
structure of the network of networks, which does not com-
pletely correspond to the underlying network. In the second
step, we characterize the dynamics of the network of net-
works using the roughly estimated time-evolving network.

We let xk(m) denote the time series measured from the
kth node. To estimate the time-evolving structure, we di-
vide measured time-series into some short segments. For
each segment, we estimate the structure of network in
the following manner. First, we obtain the recurrence
plot [9, 10] of time series measured at each node. The re-
currence plot of kth time series is the matrix defined as

Rk
i, j =

{
1, if d(xk(i), xk( j)) < ε,
0, otherwise, (1)

Here, d(xk(i), xk( j)) is the distance between the states at
times i and j. When the distance between values at two
times is smaller than a certain threshold ε, we plot a dot
at (i, j) and ( j, i). Second, we evaluate the interdepen-
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dency between each pair of time series using joint recur-
rence plots [11]. The joint recurrence plot of the kth and
lth time series is defined as

JRk,l
i, j = Rk

i, jR
l
i, j. (2)

Hence, in the joint recurrence plot, a dot is plotted at (i, j)
if and only if there are dots there in both recurrence plots.
The stronger the correlation between two time series is, the
more black dots are plotted in their joint recurrence plot.
The number of dots plotted in the joint recurrence plot of
two independent time series follows a binomial distribution
of size N(N − 1) and probability q1q2, where q1 and q2 de-
note the probabilities that a dot is plotted in the recurrence
plots, respectively. If the joint recurrence plot contains a
sufficiently large number of dots (0.05 significance level),
two time series are defined to be significantly correlated.
Then, two nodes, where these time series are observed, are
connected with each other. Otherwise, these nodes are not
connected.

Let A(m) be the adjacency matrix of the mth segment.
We visualize the time evolution of the network topology by
the recurrence plot of the time-series of the estimated net-
work A(m). A definition of distances is required to obtain
recurrence plots. We use the hamming distance [12]:

d(A(i), A( j)) =
∑
k>l

‖Ak,l(i) − Ak,l( j)‖. (3)

This distance corresponds to the total number of links
which exist in only one of two networks A(i) and A( j).

3. Simulation

We simulated the coupled logistic map on time-evolving
networks of networks. The dynamics of the kth node in the
time-evolving networks of networks is described as

xk(t + 1) = f (xk(t)) + K
∑

l

Wlk(t) f (xl(t)), (4)

f (x) = ax(1 − x),

where xk(t) is the state of the kth node at time t, a is the
parameter of the logistic map, W(t) is the adjacency matrix
at time t and K determines the strength of the interactions.
We set K = 0.1. The parameter a of each node is randomly
selected from [3.7, 4.0].

We prepared four instances of random networks of net-
works (W1, . . . ,W4) that consist of five subnetworks. Each
subnetwork contains ten nodes. Hence, the total number
of nodes in networks is fifty. First, we constructed the net-
work, where all of pairs of nodes within the same subnet-
work are connected and there are no links between nodes
belong to different subnetworks. Second, we rewired the
link to the randomly selected node with a certain probabil-
ity p. Smaller p results in more links within subnetworks
and less links interconnecting subnetworks. On the other

hand, if the rewiring probability p is equal to 1, the net-
work is the ordinary random network. Hence, the rewiring
probability p controls the modularity of the network. We
simulated with p = 0.2, 0.4, . . . , 1. We set the initial net-
work as W(1) = W1, and abruptly switched the network to
another instance with probability 0.0002 at each time step.

We divided each time series xk(t) into segments whose
length is 500 and constructed recurrence plots of each seg-
ment whose threshold is determined to obtain a probability
of 0.05 for plotting a dot. Then, we obtain the time series
of networks A(m) using joint recurrence plots. The thresh-
old of the recurrence plot of the estimated time-evolving
network A(m) is determined to obtain a probability of 0.2
for plotting a dot.

To validate the effectiveness of the method, we com-
pared recurrence plots of estimated time-evolving networks
to ‘raw recurrence plots’, which are recurrence plots of re-
sampled raw time series,

x(m) = (x1(500m), x2(500m), . . . , x50(500m)), (5)

instead of estimated time-evolving networks. Thresholds
of raw recurrence plots are also determined to obtain a
probability of 0.2 for plotting a dot. Precisions of recur-
rence plots are calculated in the following way. We con-
sider the network Ŵ(m), which appeared most frequently
in the mth segment, as the network at the mth segment. We
define the true recurrence plot of network patterns as

Rt
i, j =

{
1, if Ŵ(i) = Ŵ( j),
0, otherwise.

(6)

Then, the precision of the recurrence plot R is the ratio of
the number of dots contained in both the R and the true
recurrence plot Rt to the total number of dots of R, that is,∑N

i=1
∑N

j=i+1 Ri, jRt
i, j∑N

i=1
∑N

j=i+1 Ri, j
, (7)

where N is the size of recurrence plots.
We performed the simulation 50 times. The recurrence

plot of A(m), the raw recurrence plot, and the true recur-
rence plot are illustrated in Fig. 1. The recurrence plot
of the estimated time-evolving network (Fig. 1(a)) recon-
structs fine structures in the true recurrence plot (Fig. 1(c))
better than the raw recurrence plot (Fig. 1(b)).

Precisions with various rewiring probabilities are shown
in Fig. 2(a)-2(e). In all of cases, precisions of recurrence
plots of time-evolving networks are significantly higher
than those of raw recurrence plots (p < 5 × 10−9 for all
of cases, Wilcoxon signed-rank test).

Medians of precisions of recurrence plots of time-
evolving networks with each rewiring probability are plot-
ted in Fig. 2. Precisions in the case where the rewiring
probability is equal to 0.2 are significantly smaller than
those in other cases (p < 5 × 10−8, Wilcoxon signed-rank
test). This result indicates that the high modularity of net-
works of networks make it difficult to characterize the dy-
namics of time-evolving networks.
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4. Conclusion

There are many networks of networks in this world. In
many cases, structures of these networks are time-evolving
and unknown. We tried to capture the dynamics of time
evolution of networks of networks from time series mea-
sured on individual nodes. To characterize the dynamics of
time evolution of networks, we estimate the network topol-
ogy from measured time series. However, many networks
of networks have high modularity which makes it more dif-
ficult to estimate network topologies.

We performed numerical simulations, where individual
dynamics interact with each other on the network of net-
works whose structure abruptly changes. We used recur-
rence plots of time series of networks estimated from ob-
served time series. The network of networks was obtained
by rewiring links of isolated complete subnetworks with a
certain rewiring probability p. We investigated the relation
between precisions of recurrence plots of estimated time-
evolving networks and modularity of underlying networks
by changing the rewiring probability. Although higher
modularity of networks of networks result in lower preci-
sions of recurrence plots of time-evolving networks, these
recurrence plots extracted significantly more information
than recurrence plots of raw time series. These results in-
dicate the possibility to characterize the dynamics of time
evolution of a variety of networks of networks, even if their
topologies are unknown.
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Figure 1: Recurrence plots of one of numerical simulations
with the rewiring probability p = 0.2. (a) The recurrence
plot of the time series of estimated networks A(m). (b) The
raw recurrence plot. (c) The true recurrence plot Rt.
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Figure 2: (a-e) Plots of precisions of recurrence plots with
various rewiring probabilities. In these plots, vertical axes
mean precisions of recurrence plots of time-evolving net-
works A(m) and horizontal axes mean those of raw recur-
rence plots. (a) p = 0.2. (b) p = 0.4. (c) p = 0.6. (d)
p = 0.8. (e) p = 1.0. (f) Medians of precisions of recur-
rence plots of time-evolving networks.
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