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1. Introduction

Periodic structures are widely used in microwave, millimeter-wave, and optical wave regions,
and many analytical and numerical approaches have been developed to analyze the scattering from
periodic structures. When a plane-wave illuminates a perfectly periodic structure, the Floquet theorem
asserts that the scattered fields are pseudo-periodic (namely, each field component is a product of a
periodic function and an exponential phase factor). This implies that the scattered fields have discrete
spectra in the wavenumber space. The field components can be therefore expressed in the generalized
Fourier series expansions, and the analysis region can be reduced to only one periodicity cell. Then most
of the approaches for periodic structures are based on the Floquet theorem. However, when the structural
periodicity is broken even if locally, the Floquet theorem is no longer applicable and the analysis region
has to generally cover all the scattering structure under consideration.

This paper presents an approach in spectral-domain for the electromagnetic scattering problem
of an imperfectly periodic structure, in which a circular cylinder is located near a periodically corru-
gated surface. The fields in imperfectly periodic structures have continuous spectra, and an artificial
discretization in the wavenumber space is necessary for numerical computation. When perfectly peri-
odic structures are illuminated by incident fields with continuous spectra, the spectra of scattered fields
are known to have infinite number of non-smooth points in the wavenumber space, which are called
the Wood anomalies. They do not vanish if the structural periodicity is locally collapsed, and should
be taken into account on the discretization in the wavenumber space. The present approach uses the
pseudo-periodic Fourier transform (PPFT) [1] to consider the discretization scheme in the wavenumber
space. PPFT converts an arbitrary function into a pseudo-periodic one, and the transformed function
can be expressed in the generalized Fourier series expansion. Then the conventional formulations for
perfectly periodic structures based on the Floquet theorem can be applied to analyze the scattering prob-
lem of imperfectly periodic structures. The transformed function has also a periodic property in terms
of the transform parameter, which is related to the wavenumber, and the analysis region in the spectral
domain is reduced to the Brillouin zone. Therefore, the discretization scheme in terms of the transform
parameter can be considered inside the Brillouin zone.

2. Settings of the Problem

We consider time-harmonic fields assuming a time-dependence ine−i ω t and the electromagnetic
scattering problem from a circular cylinder located near a periodically corrugated surface schematically
shown in Fig. 1. The structure is uniform in thez-direction and they-axis is perpendicular to the surface
plane. The corrugated surface is given byy = g(x), whereg(x) is a known periodic function with a
periodd. The minimum and the maximum values ofg(x) are respectively denoted byya andyb, and
g(x) is supposed to be a continuous function with continuous derivative for simplification. The substrate
regiony < g(x) is filled with a homogeneous and isotropic medium described by a permittivityεb and
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Figure 1: Geometry under consideration.

a permeabilityµb. The surrounding regiony > g(x) is also filled with a homogeneous and isotropic
medium with the permittivityεs and a permeabilityµs, and a circular cylinder with the permittivityεc,
the permeabilityµc, and the radiusac is located in this region at(x, y) = (xc, yc) for yc > yb + ac. The
wavenumber in each region is denoted bykr = ω

√
εr µr for r = b, s, c. The electromagnetic fields are

uniform in thez-direction and two-dimensional scattering problem is here considered. Two fundamental
polarizations are expressed by TE and TM, in which the electric and the magnetic fields are respectively
parallel to thez-axis. Here, we denote thez-component of electric field for the TE-polarization and
thez-component of magnetic field for the TM-polarization byψ(x, y), and show the formulation. The
incident field is supposed to illuminate the scatterers from the upper or lower regions and there exists no
source inside the scatterer regionya ≤ y ≤ yc + ac.

3. Outline of Formulation

PPFT ofψ(x, y) and its inverse transform are formally defined by

ψ(x; ξ, y) =
∞∑

m=−∞
ψ(x−m d, y) ei m d ξ, ψ(x, y) =

1
kd

∫ kd/2

−kd/2
ψ(x; ξ, y) dξ (1)

whereξ denotes the transform parameter. The transformed fieldψ(x; ξ, y) has a pseudo-periodic prop-
erty in terms ofx: ψ(x − d; ξ, y) = ψ(x; ξ, y) e−i d ξ and also have periodic property in terms ofξ:
ψ(x; ξ − kd, y) = ψ(x; ξ, y). On the benefit of the pseudo-periodicity, the transformed field is approxi-
mately expressed in the truncated generalized Fourier series expansion:

ψ(x; ξ, y) =
N∑

n=−N

ψn(ξ, y) ei αn(ξ) x (2)

with αn(ξ) = ξ + nkd whereN denotes the truncation order.
The fields in the homogeneous media satisfy the Helmholtz equation, and the transformed field

can be expressed in the plane-wave expansion [1]:

ψ(x; ξ, y) = f (+)
r (x; ξ, y − y′)t a(+)

r (ξ, y′) + f (−)
r (x; ξ, y − y′)t a(−)

r (ξ, y′) (3)

with
(
f (±)

r (x; ξ, y)
)

n
= ei(αn(ξ) x±βr,n(ξ) y), βr,n(ξ) =

√
kr

2 − αn(ξ)2 (4)

wherea
(±)
r (ξ, y′) are column matrices that are generated by the amplitudes of the plane-waves aty = y′.

The subscriptr (r = b, s) indicates the region with the wavenumberkr, and the superscripts(+) and



(−) indicate the propagation in the+y- and−y-directions, respectively. They-dependence ofa(±)
r (ξ, y)

is given by

a(±)
r (ξ, y) = V r(ξ,±

(
y − y′

)
) a(±)

r (ξ, y′),
(
V r(ξ, y)

)
n,m

= δn,m ei βr,n(ξ) y (5)

whereδn,m denotes Kronecker’s delta.
Since the transformed fields are expressed in the generalized Fourier series expansions as shown

in Eq. (2), the scattering problem of the periodically corrugated surface can be solved by the conventional
grating theories. Here, we use the differential method with following Li’s Fourier factorization rules [2],
and derive the scattering relation in the following form:

(
a

(+)
s (ξ, yb + 0)

a
(−)
b (ξ, ya − 0)

)
=

(
Sg,11(ξ) Sg,12(ξ)
Sg,21(ξ) Sg,22(ξ)

)(
a

(−)
s (ξ, yb + 0)

a
(+)
b (ξ, ya − 0)

)
. (6)

This relation does not include any convolution like expression because we have used the structural period
d to define PPFT. On the other hand, the scattering by the additional cylinder located at(x, y) = (xc, yc)
is described by the transition-matrix and the plane-wave amplitudes aty = yc ± 0 are related in the
following form:

(
a

(+)
s (ξ, yc + 0)

a
(−)
s (ξ, yc − 0)

)
=

(
a

(+)
s (ξ, yc − 0)

a
(−)
s (ξ, yc + 0)

)

+
1
kd

∫ kd/2

−kd/2

(
Sc,11(ξ, ξ′) Sc,12(ξ, ξ′)
Sc,21(ξ, ξ′) Sc,22(ξ, ξ′)

)(
a

(−)
s (ξ′, yc + 0)

a
(+)
s (ξ′, yc − 0)

)
dξ′. (7)

The structure neary = yc is not periodic in thex-direction and the convolution like expression remains.
The expressions of the scattering matricesSp,nm(ξ) andSc,nm(ξ, ξ′) for n,m = 1, 2 are omitted in this
paper because of the page limitation.

Equations (6) and (7) that relate the plane-wave amplitudes have to be satisfied for arbitraryξ.
Here, considering the periodicity in terms of the transform parameterξ, we takeL sample points{ξl}L

l=1

in the first Brillouin zone−kd/2 < ξ ≤ kd/2, and Eqs. (6) and (7) are satisfied only at the sample points.
Also, the integration in Eq. (7) is approximated by an appropriate numerical integration scheme. To treat
the discretized Rayleigh coefficients systematically, we introduce the following column matrices:

ã(±)
r (y) =




a
(±)
r (ξ1, y)

...

a
(±)
r (ξL, y)


 (8)

for r = b, s, and then Eqs. (6) and (7) are rewritten as follows:
(

ã
(+)
s (yb + 0)

ã
(−)
b (ya − 0)

)
=

(
S̃g,11 S̃g,12

S̃g,21 S̃g,22

) (
ã

(−)
s (yb + 0)

ã
(+)
b (ya − 0)

)
(9)

(
ã

(+)
s (yc + 0)

ã
(−)
s (yc − 0)

)
=

(
S̃c,11 S̃c,12

S̃c,21 S̃c,22

)(
ã

(−)
s (yc + 0)

ã
(+)
s (yc − 0)

)
(10)

with

S̃g,nm =




Sg,nm(ξ1) 0
...

0 Sg,nm(ξL)


 (11)

S̃g,nm =
1
kd




w1 Sc,nm(ξ1, ξ1) · · · wL Sc,nm(ξ1, ξL)
...

...
...

w1 Sc,nm(ξL, ξ1) · · · wL Sc,nm(ξL, ξL)


 +

{
0 for n = m

I for n 6= m
(12)



where0 andI denote the null and the identity matrices, respectively, and{wl}L
l=1 denotes the weight

factor. From Eqs. (5), (9), and (10), we finally obtain the scattering relation for the entire structure as
(

ã
(+)
s (yc + 0)

ã
(−)
b (ya − 0)

)
=

(
S̃11 S̃12

S̃21 S̃22

)(
ã

(−)
s (yc + 0)

ã
(+)
b (ya − 0)

)
(13)

with

S̃11 = S̃c,11 + S̃c,12 Ṽ s

(
I − S̃g,11 Ṽ s S̃c,22 Ṽ s

)−1
S̃g,11 Ṽ s S̃c,21 (14)

S̃12 = S̃c,12 Ṽ s

(
I − S̃g,11 Ṽ s S̃c,22 Ṽ s

)−1
S̃g,12 (15)

S̃21 = S̃g,21 Ṽ s

[
I + S̃c,22 Ṽ s

(
I − S̃g,11 Ṽ s S̃c,22 Ṽ s

)−1
S̃g,11 Ṽ s

]
S̃c,21 (16)

S̃22 = S̃g,21 Ṽ s S̃c,22 Ṽ s

(
I − S̃g,11 Ṽ s S̃c,22 Ṽ s

)−1
S̃g,12 + S̃g,22 (17)

Ṽ s =




V s(ξ1, yc − yb) 0
...

0 V s(ξL, yc − yb)


 . (18)

It is worth noting that, if the sample points of the transform parameter{ξl}L
l=1 are taken with the

constant interval and the weights{wl}L
l=1 are identical constants, the convergence in terms of the sample

numberL becomes very slow and the practical computation is impossible. This means that, from the
sampling theorem, the analysis region with finite width in the spatial region cannot supply the practical
computation. The trapezoidal scheme is known to usually provide accurate results to integrate smooth
periodic functions over one period. However, the integrands are not smooth at the Wood-Rayleigh
anomalies that are known to occur when diffraction field of a spectral order propagates along the grating
surface and cause abrupt changes in the power diffracted into the other orders. Then thex-directional
propagation constantξ has to satisfyαn(ξ) = ±ks or αn(ξ) = ±kb at the anomalies. In the present
formulation, the anomalies are degenerated to four points in the Brillouin zone. It is well known, if there
are discontinuities or singularities of the integrand or of its derivative and we know where they are, the
integration range should be split at these points and analyze each subinterval. We split the integration
interval at the Wood-Rayleigh anomalies, and the sample points and weights are decided by applying
the Gauss-Legendre scheme or the double exponential scheme for each subinterval.

4. Concluding Remarks

This paper has presents a formulation of the two-dimensional electromagnetic scattering prob-
lem from a circular cylinder located near a periodically corrugated surface. The formulation is based on
PPFT and the fields in homogeneous media are expressed in the plane-wave expansions. The scattering
matrices of the periodic surface and the additional cylinder are separately calculated by the conven-
tional methods, and the plane-wave amplitudes are matched by the technique for multilayer structure.
PPFT introduces a transform parameterξ and we need to discretize it for practical computation. The
transformed fields are periodic in terms ofξ and the discretization scheme can be considered inside the
Brillouin zone.
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