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Abstract—A discontinuous Galerkin finite-element time-
domain (DG-FETD) code is developed to simulate some interest-
ing and challenging antennas. It incorporates several advanced
techniques, such as higher-order tetrahedral elements, conformal
perfectly matched layer (PML), and local time-stepping scheme.
To further speed up the calculation, the DG-FETD method is
parallelized by using Message Passing Interface (MPI).

I. INTRODUCTION

The discontinuous Galerkin finite-element time-domain

(DG-FETD) method [1]-[5] is one of the most important

time-domain methods for solving complex electromagnetic

(EM) problems. The DG-FETD method is not only globally

explicit, but also capable of dealing with arbitrarily-shaped

and inhomogeneously-filled objects. In this paper, the well-

developed DG-FETD code is applied to simulate some inter-

esting and challenging antennas. It involves the implementa-

tion of the higher-order tetrahedral element technique [6]-[8],

conformal perfectly matched layer (PML) technique [1], local

time-stepping (LTS) scheme [4], and parallelization scheme

using Message Passing Interface (MPI) [3]. Good numerical

results demonstrate the validity and capability of the parallel

higher-order DG-FETD method.

II. BASIC FORMULATION

The Maxwell’s curl equations in the non-PML region are

written as

∇×E = −
µr

c

∂H̄

∂t
, ∇× H̄ =

ǫr

c

∂E

∂t
(1)

where H̄ = η0H. The boundary conditions is imposed on the

interface of elements [1]-[3]

J̄s = n̂× (H̄+
− H̄), Ms = −n̂× (E+

−E) (2)

Applying the Galerkin’s approach in each element Vi [1]-[2]

and taking advantage of the leap-frog (LF) scheme [2], one

can obtain the matrix equations [2]

Ahhv(h
n+ 1

2 − hn− 1

2 ) = −(Aheve
n +A+

hese
+n)− bhs (3a)

Aeev(e
n+1

− en) = Aehvh
n+ 1

2 +A+
ehsh

+(n+ 1

2
)
− bes (3b)

In the simulation, the conformal PML is applied to termi-

nate waveguide. The corresponding differential equations of

auxiliary variables Ẽ, H̃, P, and Q are given by [1]-[2]

∇× Ẽ = −
µr

c

∂ ¯̄A1 · H̃

∂t
− µr

¯̄A2 · H̃− µr
¯̄A3 ·P (4a)

∇× H̃ =
ǫr

c

∂ ¯̄A1 · Ẽ

∂t
+ ǫr

¯̄A2 · Ẽ+ ǫr
¯̄A3 ·Q (4b)

¯̄A−1
5 · H̃−

¯̄A4 ·P =
1

c

∂P

∂t
(4c)

¯̄A−1
5 · Ẽ−

¯̄A4 ·Q =
1

c

∂Q

∂t
(4d)

where ¯̄Aj = ¯̄JTΛj
¯̄J, j = 1, · · · , 5. Λj are 3 × 3 diagonal

matrices. ¯̄J is a tensor related to the local coordinate system

on the interface between the PML and non-PML regions.

Discretizing the above differential equations yields [2]

(Ahha +Ahhb)h
n+ 1

2 =(Ahha −Ahhb)h
n− 1

2 −Ahpp
n

− (Aheve
n +A+

hese
+n)− bhs

(5a)

(Aqq +Aqqd)q
n+ 1

2 = (Aqq −Aqqd)q
n− 1

2 +Aqee
n (5b)

(Aeea +Aeeb)e
n+1 = (Aeea −Aeeb)e

n
−Aeqq

n+ 1

2

+ (Aehvh
n+ 1

2 +A+
ehsh

+(n+ 1

2
))− bes

(5c)

(App +Appd)p
n+1 = (App −Appd)p

n +Aphh
n+ 1

2 (5d)

The higher-order interpolatory vector basis functions on

tetrahedral elements are applied in the above coefficient ma-

trices. The surface magnetic current Ms is imposed on the

excitation port. The incident electric fields can be found in

terms of Ms. Hence, pre-simulation of uniform waveguide

can be avoided [2].

III. NUMERICAL RESULTS

As an example, the Vivaldi antenna shown in Fig. 1 is

simulated. This antenna is fed by a shielded microstrip line

that is homogeneously filled with the dielectric ǫr = 2.32.

Figs. 2 and 3 show the incident and reflection coefficients in

the time domain, respectively. The S-parameters are shown in

Fig. 4. Fig. 5 shows the directivity patterns at 10 GHz. The

DG-FETD results agree well with the HFSS results.
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(b) Top view

Fig. 1. Configuration of the antipodal Vivaldi antenna.
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Fig. 2. Time-domain incident coefficients.
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Fig. 3. Time-domain scattered coefficients.
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Fig. 4. S-parameters of the Vivaldi antenna.
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(a) E-plane
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(b) H-plane

Fig. 5. Directivity of the Vivaldi antenna at 10 GHz.

IV. CONCLUSIONS

This paper presents the simulation of antennas using the

parallel higher-order DG-FETD method. The successful simu-

lation of the challenging antennas demonstrates the capability

of the DG-FETD method as an important time-domain tech-

nique in the computational electromagnetics.
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