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Abstract—We study global climate networks con-
structed at various time-scales by means of ordinal
time series analysis of monthly-averaged surface air
temperature (SAT) anomalies. To quantify climate
interdependencies, we compute the mutual informa-
tion from the anomaly values and from its symbolic,
ordinal-based representation. The ordinal analysis al-
lows to identify changes in the topology of the net-
work when varying the pattern, covering a short, intra-
season time scale (e.g., of a few months) to a longer,
inter-annual time scale (e.g., of a few years). We re-
port changes in the network topology with the various
time-scales and present evidence of correlations be-
tween geographical regions that occur at certain time
scales only.

1. Introduction

Complex networks appear in almost all fields of sci-
ence, examples being the internet, social interactions,
food webs, biochemical reactions, brain functional net-
works, etc. For the purpose of modeling and forecast-
ing, many systems lead naturally to the concept of
networks of interacting elements, where one can de-
fine nodes and assign links among them depending on
the (in principle, very complex) features of the system
under study. Using the network approach is then pos-
sible to extract relevant information about a system
without over simplifying it or without having to han-
dle the full scale detailed model which can obscure the
interpretations. This is precisely the situation in the
field of climate networks.

Since the atmosphere connects geographically far
away regions through waves and advection of heat
and momentum, this long-range coupling makes the
network modeling approach of the Earth’s climate ex-
tremely attractive and promising [1]. By covering the
Earth’ surface with a regular grid of nodes, and by
assigning links to connections between two different
nodes via an analysis of their climate interdependency,
the network approach has been shown to be able to ex-
tract novel and meaningful information [2, 3, 4].

Recently, two of us studied the Earth climate net-
work employing methods of nonlinear time-series anal-
ysis [5]; specifically, ordinal patterns and symbolic bi-
nary representations of the monthly-averaged surface
air temperature (SAT) anomalies. A main advantage
of this symbolic methodology is that, by varying the
length of time-period in the ordinal or binary pattern,
the analysis uncovered memory processes with differ-
ent time scales, that result in climate networks with
different structures. Here we analyze how the network
structure varies when varying the length of the pattern
and also compare with the climate network obtained
directly from SAT anomalies, i.e., without applying
the symbolic transformation.

2. Network construction

We analyze the monthly-averaged SAT anomalies
(reanalysis data of the National Center for Environ-
mental Prediction/National Center for Atmospheric
Research, NCEP/NCAR). The anomalies are calcu-
lated as the actual temperature values minus their
monthly average, and are normalized to the standard
deviation. The data covers a uniform grid over the
Earth’s surface with latitudinal and longitudinal res-
olution of 2.5◦, resulting in 10226 grid points or net-
work nodes. In each node the data covers the period
from January 1949 to December 2006, which gives 696
months or data points.

The climate network properties will depend on the
methodology employed to infer the presence of connec-
tions between two network nodes, i.e., the procedure
used to include a particular link in the network and
to filter out those correlations that may have occurred
merely by chance.

As in Refs. [1, 5], to quantify climate interdepen-
dencies we use the Mutual information (MI), that is
a nonlinear symmetric measure; is a function of the
probability density functions (PDFs) that character-
ize the time series in two nodes, pi(m) and pj(n), as
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well as of their joint probability pij(m,n).

Mij =
∑
m,n

pij(m,n) log
pij(m,n)

pi(m)pj(n)
. (1)

Mij measures the degree of statistical interdependency
as, if the two time series independent, pij(m,n) =
pi(m)pj(n) and thus, Mij = 0.

The MI was calculated from Eq. (1) with different
PDFs associated to the time series: one being the usual
histogram of values (we refer to this as MIH), and
the other being the histogram of symbolic patterns,
referred to as ordinal patterns (OPs) [6].

The OPs are calculated from the time series by not-
ing the value of a given point relative to its neighbor-
ing points in the series. For instance, for patterns of
length 3, if a value (v2) is higher than the previous one
(v1) but lower than the next one (v3), gives the pat-
tern ’123’, while the opposite case (v1 > v2 > v3) gives
the pattern ’321’. This allows to detect correlations in
the time series (which are not taken into account with
histograms of values), but has the drawback that does
not provide information on the relative values (if v1 is
twice v2 or only slightly bigger, the pattern will be the
same).

Ordinal patterns do not constrain us to construct
the pattern with immediately adjacent points. We
can construct them allowing a time interval between
points, and in this way we can consider different time
scales.

In this paper we consider patterns of length 4 and
calculated the MI, Eq. (1), with the PDFs given by
the probabilities of OPs formed by:

- four consecutive months (i.e., by comparing four
consecutive points in the time series), we refer to the
MI computed in this way as MI01;

- four months in consecutive seasons covering one-
year period (i.e., by comparing vi, vi+3, vi+7 and
vi+11), we refer to this as MI03

- four months in consecutive years (i.e., by compar-
ing vi, vi+12, vi+24 and vi+36), we refer to this as MI12.

The next step is to filter the non-significant links,
those between pairs of nodes i and j such that their
Mij value is consistent with that of a random value.
The detection of weak but significant links is a chal-
lenging task that is nowadays being the subject of in-
tensive research (see, e.g., Ref. [7]).

Here we use the simplest approach by employing
surrogated time series: we calculated the Ms

ij values
(with the supra-indice s representing surrogated data)
and found they are Gaussian-like distributed (see Fig.
1), both, when the PDFs in Eq. (1) are computed
from histograms of values of surrogated data and also
when they are computed from histograms of OPs con-
structed from surrogated data. Therefore, we com-
puted the mean value, µ, and standard deviation, σ,

Figure 1: Probability distribution function of MI val-
ues computed from SAT anomalies and their ordinal
pattern representations, for original and surrogated
data.

of the Ms
ij distribution and decided to accept links as

significant, if they are either above µ + 3.4σ or below
µ − 3.4σ. This criterium gives 99.999% of confidence
that the accepted links have MI values that could not
be due to chance.

The final step is to represent the climate network.
This is done by plotting the number of links every node
has, taking into account that the nodes represent ge-
ographic regions with different area (points near the
poles representing a smaller area than points near the
equator) and thus we represent the area-weighted con-
nectivity (AWC) [1, 3, 5], which is the fraction of the
total area of the Earth to which a node i is connected,

AWCi =

∑N
j Aij cos(λi)∑N

j cos(λj)
, (2)

where λi is the latitude of node i and Aij = 1 if nodes
i and j are connected and zero otherwise. The cosine
term corrects the factors relative to the planar projec-
tion of a spherical earth. Note that the AWC plots
provide information about the size of the total area
to which a node is connected, but do not indicate to
which node a node is connected.

3. Results and discussion

In Fig. 2 we present the results of the four net-
work construction methods. Figure 2(a) displays the
network constructed with the MIH climate interdepen-
dency quantifier; Fig 2(b), with MI01; Fig 2(c), with
MI03 and Fig. 2(d), with MI12.

In Fig 2(a) one can observe highly connected spots
which are present only in some of the other three
maps. See, for example, the high connected green
spot in the Labrador Sea in Fig. 2(a), which is also
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Figure 2: AWC for the different methods of network construction. (a) MI from histogram of time series, (b) MI
from monthly OP, (c) MI from OP taken every three months and (d) MI from yearly OP. It can be seen that
the “hub area” is localized geographically in the equatorial zone, especially it the pacific area. The title of each
plot indicates the density of links, ζ, and the significance threshold used (µ± 3.4σ, where µ and σ are the mean
and the standard deviation of the distribution of Ms

ij values computed from surrogated data, shown in Fig. 1).
In Figs. 2 (b), (c) and (d) one can observe that the pacific equatorial area grows in importance as the ordinal
pattern takes in account longer time-scales. Note how some structures present in (a) are found in some of the
other maps, suggesting that those links are tuned to a particular time scale.

seen in Fig. 2(c) and to a lesser extent in Fig 2 (b),
but is not present in Fig. 2(d). Also, one can no-
tice in Fig. 2(a) highly connected areas in Africa,
the equatorial Atlantic and western tropical north At-
lantic which are not present in the short-time scale
networks, Figs. 2(b), (c), but that are seen in the year-
time scale network, Fig. 2(d). Thus, these regions
are connected on inter-annual, but not on monthly or
seasonal time scales. The western tropical north At-
lantic is known to warm due to atmospheric circula-
tion anomalies caused by El Nino-Southern Oscillation
(ENSO) [8]. The equatorial Atlantic is also influenced
by ENSO but could also force by itself temperature
anomalies in neighboring regions. Therefore, the OP
symbolic method allows to see how the network topol-
ogy is modified by climate processes acting on different
time scales.

In Fig. 2 one can also observe that the networks con-
structed with MI01 and MI03 are more homogenously
connected than those constructed with MIH and MI12,
even though the tropical Pacific still stands out. This
suggests that on short time scales there is no domi-

nant phenomenon that interconnects remote regions.
Instead, temperature anomalies seem to be governed
by regional patterns of atmospheric internal variabil-
ity.

In spite of the fact that we have used the same sig-
nificance criterium for the four networks, the number
of links are significantly different, due to the fact that
the values of Mij have a distribution with different
mean and shape, depending on how the PDFs are cal-
culated (see Fig. 1). An alternative approach would
be to vary the significance threshold and to adjust the
threshold such that the four networks have a similar
number of links. This approach was used in [5] where
it was also found that the short-time scale network
MI01 was more uniformly connected than MI12.
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