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Abstract—A novel framework to analyze nonlinear
time series and complex networks has recently been pro-
posed. In the framework, nonlinear time series are trans-
formed to networks and analyzed through the transformed
networks. On the other hand, the networks are also trans-
formed to time series and analyzed through the obtained
time series. In this paper, we show that the transformation
method from the networks to the time series can be applied
to analyze the evolution of sizes of communities in the net-
works. We apply the transformation method to an evolving
network model and show that the method can detect the
temporal change of the evolution of the citation network.

1. Introduction

A network, or a graph, is one of effective tools to de-
scribe various real systems. To analyze real networks, sev-
eral measures that quantify their structural properties have
been proposed, and thereby one can obtain structural and
dynamical properties of the real systems (see for exam-
ple [1]). Recent researches on nonlinear time series anal-
ysis incorporate the measures of the networks and build a
novel framework to analyze nonlinear time series [2]. In
the framework, the time series are firstly transformed into
networks by several methods [3–8]. These methods enable
us to analyze the networks transformed from the time se-
ries by the measures of the networks. The properties of
the transformed networks characterize their original time
series.

On the other hand, we have proposed an opposite method
for transforming the networks into the time series to an-
alyze the networks through their time series [9]. In the
method, the structures of the networks are embedded in
their time series: lattices correspond to periodic time se-
ries, small world networks to noisy periodic time series,
and random networks to random time series. We can quan-
tify the structural properties of the networks through the
obtained time series.

In this paper, we focus on the transformation method

from the networks to time series [9]. We then find that
the method closely relates to one of community detec-
tion methods, and that the time series obtained from the
networks include the information about communities in
the network. Applying the transformation method to an
evolving network model, we show that the transformation
method can detect communities. By combining the tem-
poral information and the information about the detected
communities, the temporal growth of the sizes of the com-
munities is evaluated.

2. Method for transforming networks to time series

In Ref. [9], we proposed a method for transforming net-
works to time series. The method has three steps: (i) defin-
ing a distance between nodes, (ii) arranging the nodes in
the Euclidean space by the classical multidimensional scal-
ing (CMDS) such that the given distance relations hold, and
(iii) tracking the obtained coordinate vectors of the nodes in
the order of time when each node is added to the network.
The distance dij is defined on the basis of the adjacency
relation between nodes i and j. If two nodes connect with
each other, dij = 1, otherwise dij = w (> 1).

Let an N ×N symmetric matrix A = (aij) be an adja-
cency matrix of the undirected network in which aij = 1
if the node i connects to j by an link, otherwise aij = 0.
The CMDS arranges the nodes on the Euclidean space by
using the following relationship between the innerproduct
and the Euclidean distance [10]
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where dij is the Euclidean distance and xm =
(xm1, xm2, . . . , xmh)ᵀ is an h-dimensional coordinate
vector of the mth node. By this relation, one can obtain co-
ordinate vectors only from the distances between the nodes
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by the following equation:

XᵀX = (xᵀ
i xj) = −1

2
JD(2)J, (2)

where D(2) =
(
d2

ij

)
, X = (x1, x2, . . . ,xN )ᵀ, J =

E − 1
N 11ᵀ, 1 is a column vector with N ones, and E is

an N × N unit matrix. By using the eigenvalues and the
eigenvectors of the matrix G ≡ − 1

2JD(2)J , we can esti-
mate the matrix X as follows

G = V ΛV ᵀ = (Λ(1/2)V ᵀ)ᵀ(Λ(1/2)V ᵀ) = XᵀX. (3)

where Λ = diag(λ1, · · · , λh), λi (λ1 ≥ · · · ≥ λh > 0)
is the ith positive eigenvalue of G, vi is the ith eigenvector
corresponding to λi, and V = (v1, · · · , vh)ᵀ. Assuming
that the node t is added to the network at time t, we can
obtain the ith time series yi(t) defined by

yi(t) =
√

λivti. (4)

3. Relationship between time series and communities

Time series obtained from a network by the transforma-
tion method give us a certain division of the network. In the
following, we present the relationship between the transfor-
mation method and one of community detection methods
that uses eigenvectors of a matrix which is called a modu-
larity matrix.

3.1. Community detection method

A method based on the modularity is one of effective
methods to find groups, or communities, in a network. The
basic idea of the modularity-based community detection
method is to find a particular division of a given network
by comparing the number of links included in each group
of the given network with that of random networks. Be-
cause the random networks usually have no groups, namely
densely connected subgraphs, if the given network has M
groups, the total sum of the differences Q between the
number of links in the groups of the given network and
that of the random networks (null model) takes large value.
The sum Q is called the modularity and described by

Q =
M∑

r=1

N∑
i=1

N∑
j=1

(aij − Pij)uirujr = Tr(UᵀBU),(5)

where the null model Pij be the expected number of links
between nodes i and j in a random network, and

uij =
{

1 if the group j includes the node i,
0 otherwise . (6)

In Eq. (5), Tr(UᵀBU) shows the matrix form of Q, where
B = (bij), bij ≡ aij − Pij , and the N ×M matrix U =
(uij). The matrix B is called the modularity matrix.

Indeed, the null model Pij is arbitrary, but Pij

needs to satisfy the conditions
∑N

j=1 Pij = ki and∑N
i=1

∑N
j=1 Pij = 2L, where L is the total number of

links in the network. When the null model Pij is given, we
can obtain groups in the network by the maximization of
Q. Because B is a real symmetric matrix, the eigenvalues
and their eigenvectors can be calculated. By the eigenval-
ues and the eigenvectors, Eq. (5) is rewritten by

Q =
N∑

i=1

M∑
j=1

λi(v
ᵀ
i uj)2 =

N∑
i=1

λi(β
j
i )2, (7)

where uj is written as a linear combination of the normal-
ized eigenvectors uj =

∑
i βj

i vi in the second equality.
Equation (7) implies that Q can be maximized by deciding
the value of uij such that if vij ≥ 0, uij = 1, but if vij < 0,
uij = 0. In other words, ui should be decided as parallel to
the eigenvector with the ith largest eigenvalue as possible.

3.2. How time series relate to the community detection

To clarify the relationship between our method and the
community detection method, we redefine the distance dij :
if the node i connects to j, d2

ij = α − 1, otherwise
d2

ij = α (> 1). This distance implies that the distances
between connected nodes are shorter than those between
unconnected nodes, and the distance takes only three val-
ues, zero,

√
α, and

√
α− 1. In this sense, the redefined

distance is essentially the same as the distance in [9]. The
distance dij has the following another form

d2
ij = (1− δij)(α− aij), (8)

where if i = j, δij = 1, otherwise zero. Substituting Eq.
(8) into Eq. (1), we obtain the element of G, gij , as follows
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where
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. (10)
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In Eq. (10), P ′
ij satisfies the conditions,

∑N
j=1 P ′

ij = ki

and
∑N

i=1

∑N
j=1 P ′

ij = 2L. This relation implies that P ′
ij

can be used as a null model in the modularity, and we de-
fine the modularity Q′ as Tr(UᵀGU). As shown in Eq.
(4), the obtained time series are proportionally equal to
eigenvectors, and thus the time series corresponding to the
largest eigenvalues can partition a given network such that
the modularity Q′ is maximized.

4. Results

To confirm the relation between time series generated
from networks and community structures, we investigate
networks generated from the model proposed by Klemm
and Eguı́luz (KE model) [11]. The KE model is realized by
the following algorithm:

1. Starting from a complete graph with m0 nodes at time
t = 0. The states of these nodes are active.

2. Increasing time t by unity (t← t + 1).

3. At time t, the (m0 + t)th node with m0 links is newly
added to the network. The state of the new added node
is active.

4. The new added node connects to m0 active nodes with
probability 1−µ and randomly connects to m0 nodes
with probability µ by the preferential attachment rule
in which each link of the new node is connected to the
pre-existing node i with probability ki/

∑m0+t−1
j=1 kj .

5. One of active nodes is deactivated. The ith node is de-
activated with the probability k−1

i /
∑

j∈I k−1
j , where

I is a set which includes indices of all active nodes.

6. Repeating the steps 2–5 until time T (= N −m0).

In this model, the indices of nodes directly indicate the or-
der of time when each node is added to the network. By us-
ing this information, we transform the networks into time
series by Eqs. (2)–(4).

In the KE model, old nodes are not so easy to con-
nect with young nodes because of the deactivation, and the
nodes whose indices are similar are likely to connect with
each other. This process of the deactivation involves groups
of densely connected nodes, and hence the networks gen-
erated from the KE model include some groups. In the
following numerical simulations, we show that our method
can detect these groups.

Figure 1 shows a typical example of an adjacency matrix
of the network generated from the KE model, which the
parameters are set to N = 4, 000, m0 = 10, and µ = 0.2.
This network has typical three hub-nodes with over 500
degree, the 139th node (A), the 1159th node (B), and the
2301th node (C). We apply our method (α = 2) to this
network and then obtain time series.

From Fig.2(a), the first time series s1(t) divides the net-
work into two groups. One group consists of the node
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Figure 1: Adjacency matrix of the network generated from
the KE model as a typical example.

i which satisfies s1(i) > 0, and this group mainly con-
sists of two types of nodes: nodes connecting A and nodes
not connecting A, B, and C [purple rectangles in Fig.2(a)].
By using s2(t), we can further distinguish these types of
nodes. In Fig.2(a), 98% of nodes which connect to A [blue
circles in Fig.2(a)] are included in the region that satisfies
s1(t) < 0 and s2(t) < 0, while 80% of nodes which con-
nect to A, B, and C [purple rectangles in Fig.2(a)] are in-
cluded in the region that satisfies s1(t) < 0 and s2(t) > 0.

On the other hand, most nodes which satisfy s1(t) < 0
connect the hub-nodes B and C. In this case, although
we cannot distinguish two types of nodes, namely nodes
connecting B and nodes connecting C, only from s1(t)
and s2(t), s3(t) or s4(t) can divide them [Fig.2(b)]. In
Fig.2(b), most nodes which satisfy s3(t) > 0 (or s4(t) > 0)
connect to C, but most nodes which satisfy s3(t) < 0 (or
s4(t) < 0) do not connect to C. From these results, we
can obtain the four sets of indices of nodes: the group-1
G1 = {i|s1(i) > 0 and s2(i) > 0} [purple rectangles in
Fig.2(a)], the group-2 G2 = {i|s1(i) > 0 and s2(i) < 0}
[blue circles in Fig.2(a)], the group-3 G3 =
{i|s1(i) < 0 and s3(i) < 0} [red circles in Fig.2(b)],
and the group-4 G4 = {i|s1(i) < 0 and s3(i) > 0}
[yellow rectangles in Fig.2(b)].

Combining the temporal information of the time series
and the information of communities, we can track the tem-
poral evolution of the size of each group. From Eq. (4),
the time series obtained from the network have the tem-
poral information about the order of time when nodes are
added to the network. From this information, the number
of nodes included in the group j at time t is calculated by
the following equation

Nj(t) =
∑
i∈Gj

H(t− i), (11)

where the function H(x) is the Heaviside step function in
which if x < 0, H(x) = 0, but if x > 0, H(x) = 1.

Figure 3 shows temporal changes of the size of the
groups. After that the hub-node A appears, the size of the
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Figure 2: Divisions by (a) the fist time series s1(t) and the
second time series s2(t) and (b) the third time series s3(t)
and the fourth time series s4(t).

group-2 rapidly increases. However, the growth of the size
of the group-2 becomes slow after that the hub-node B ap-
pears, while the size of the group-4 quickly increases. In
the same way, the growth of the size of the group-4 be-
comes slow after that the hub-node C appears. On the other
hand, the size of the group-3 quickly increases. From these
results, by using the time series from the network, we can
effectively detect the evolution of the sizes of the citation
network. In the above numerical simulations, we show the
results for a typical network generated from the KE model.
Even if we apply our method to other networks generated
from the KE model with several parameters, our method
can work well. Here, if µ is close to unity, the KE model
is essentially the same as the BA model, and the networks
generated from the KE model are almost random. In this
case, groups do not usually emerge and thus our method
does not naturally detect the groups.
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Figure 3: The cumulative number of nodes in each group at
time t. The first vertical dashed line shows the appearance
time of the paper A, the second vertical dashed line shows
the appearance time of the paper B, and the third vertical
dashed line shows the appearance time of the paper C,

5. Conclusion

In this paper, we focused on the transformation method
from networks to times series and showed that the transfor-
mation method is interpreted as one of community detec-
tion methods. We can then divide the networks into some
groups by using the time series as well as a community de-
tection method that uses the eigenvectors of the modularity
matrix. Utilizing two information in the transformed time
series, namely the community information and the tempo-
ral information, we proposed a method to detect the evo-
lution of sizes of groups in the networks. To confirm the
validity of the method, we analyzed the network generated
from the KE model. We then showed that our method can
effectively detect the large groups in the network and can
track the temporal evolution of the sizes of the groups. As
a future work, we will analyze the differences between tra-
ditional community detection methods and our method in
detail.
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