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Abstract— This paper introduces a new technique for immunity 
modeling of integrated circuits, compliant with industrial 
requirements. A specific modeling flow is introduced and 
validated through measurements performed on several devices. 
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I. INTRODUCTION 
Nowadays, the complexity and operation speed of 

electronic systems are getting higher and higher. Therefore, 
they are subject to many EMC issues, either in emission or 
immunity. In particular, integrated circuits (ICs) are one of the 
main causes of parasitic emission, while their immunity is 
decreasing. Consequently, EMC models of ICs are becoming 
compulsory for proper PCB- (printed circuit board) or system-
level EMC simulations. Previous research has already led to 
the development of ICEM (Integrated Circuit Emission 
Model), addressing emission issues [1][2]. The use of such a 
model has already been validated to predict electromagnetic 
emission at PCB or system level [3][4]. 

Many studies have been conducted on immunity modeling 
of ICs, but these techniques are often difficult to implement in 
an industrial context. For example, in Boyer's [5] and 
Alaeldine's [6] approaches, model extraction generally 
requires information on the internal structure of the IC, which 
is not easy to collect. Besides, a black-box approach based on 
a neural technique has also been suggested by Chahine [7]; 
however, a huge amount of characterization is then required to 
generate an accurate model. In the aforementioned techniques, 
models can only be used in time domain to highlight IC 
failures (detection efficiency, jitter…). 

Conversely, industrial constraints require another approach: 
ICs must be treated as black boxes, and only external 
information should be used to generate their models. 
Moreover, generation must be as fast as possible, and the 
resulting model should be usable in frequency domain. 
Therefore, this paper describes a new technique driven by 
these constraints. 

The paper is organized as follows. Sect. II describes the 
structure and validity conditions of the model. Then, in Sect. 
III, the extraction flow is explained and illustrated through an 
example. Finally, Sect. IV summarizes the results obtained on 

various IC families, thus validating this technique and leading 
to new perspectives. 

II. STRUCTURE OF THE SUGGESTED MODEL 

A. Validity domain and assumptions 
The suggested model is dedicated to the prediction of 

immunity behavior for continuous wave (CW) disturbances, in 
the 1 MHz - 3 GHz frequency range, and up to 36 dBm 
incident power in a direct power injection (DPI) test [8]. On a 
single IC, it can be deduced from experience that this 
corresponds more or less to the equivalent disturbance level 
induced by a system-level test such as bulk current injection 
(BCI) [9] or radiated immunity [10], for typical automotive 
applications and requirements. 

The suggested model, like the ICEM model [1][2], is 
mainly based on a passive distribution network (PDN). For 
this model to be used in the frequency domain, it must be 
assumed that PDN impedances are constant and will not be 
influenced by the injected HF disturbance. This assumption of 
linearity is linked to the disturbance characteristics to be 
considered for immunity analysis. In the case of 36 dBm 
incident power in DPI, the voltage induced across a high-
impedance input (worst case) is approximately 28 V. Seeing 
that non-linear effects affecting input impedances in ICs are 
mainly due to ESD protections, which are typically triggered 
by voltages from 30 to 40 V, it can be considered that such an 
assumption is realistic. Nevertheless, this must be 
systematically checked for model validation. For higher 
disturbance levels, or for high-voltage pulses, other techniques 
should be used, such as [5][6][7], including non-linear 
behaviors, or [11] for particular pulsed-wave considerations. 

The second assumption states that a given device is always  
perturbed by a constant transmitted (or active) power through 
its inputs, and that passive devices, located around the IC in a 
real  application, only define the transfer function for the 
disturbance from outside the system to the IC itself. The 
choice of this criterion is motivated by the requirement to 
settle for only external observations of ICs. Once more, this 
assumption must be validated by specific measurements. 

Finally, a failure criterion in the IC model must be defined 
from the functional tolerances related to its use in the 
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application.  This means that a given model is only valid for 
specific failure criteria, and that a set of models should be 
generated if different tolerances must be considered in an 
application. 

B. Model Structure
The model structure corresponds to the current IEC 

standard proposal for the Integrated Circuit Immunity Model 
(ICIM) [12]. The first part of the model is based on a PDN 
structure which can be described with the same techniques as 
ICEM. This paper uses Spice polynomial black-box models 
obtained from direct S-parameter measurements thanks to the 
IdEM tool [13], sparing long and tedious modeling procedures. 

The second part of the model consists of a table indicating 
the transmitted power triggering a failure as a function of 
frequency. This table makes it possible to state, in any 
configuration, if transmitted power goes reaches the threshold 
which generates a malfunction. 

C. General extraction flow for the model
The objective of the extraction flow (Fig. 1) is to define 

some characterization steps to extract the PDN, to evaluate the 
transmitted power threshold, and to perform model validation.  

 

 
Fig. 1  Extraction and validation flow 

The characterization requires a testing methodology and a 
test set-up which make it possible to determine the transmitted 
power accurately during the test. DPI and modeling 
techniques are indeed the most appropriate methods. 

 The PDN is then required to compute transmitted power. 
The other steps of the flow only validate the model, by 
checking the linearity assumption for the impedance and the 
validity of the active power criterion.  

III. AN EXAMPLE OF MODEL EXTRACTION 

A. Test case definition
The aforementioned flow will be detailed through a simple 

example, dealing with the case of a LIN transceiver. The 
failure criteria are the functional requirements defined in the 
LIN specification: ± 5 μs jitter and ± 2.5 V in amplitude on 
the LIN signal.  

B. DPI characterization
Only the pins connected outside the system (LIN and 12V) 

will be considered for this test case. A specific test board is 
used, in order to control the injection path.  

 

 
Fig. 2  Test board used for DPI characterization 

As far as the 12V pin characterization is concerned, several 
tests are performed: the first one is a reference configuration 
without any filter, making it possible to obtain the actual 
transmitted power threshold. Two other configurations are 
also tested, with different decoupling capacitance values (100 
pF or 10 nF), to provide additional results for the validation of 
the model. Results obtained on the 12V pin are given in Fig 3. 
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Fig. 3  DPI results: incident power triggering a failure                                      

Config. 2: reference without any decoupling                                               
Config. 1 and 3: with 10 nF or 100 pF decoupling 

C. Extraction of S-parameters
After the DPI characterization, the S-parameters of the IC 

must be extracted, by considering each pin as a port 
(referenced to the ground pin of the IC). This step is 

DPI characterization

for immunity evaluation and
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performed after the DPI tests, so that the vector network 
analyzer (VNA) can be configured with an incident power 
lower by at least 10 dB than the minimum identified 
disturbance level. Below the failure level, it can be considered 
that the linearity assumption is true but, as soon as the device 
is perturbed, this is not the case; for example, the impedance 
of a logic output will differ depending on its state, which can 
change due to the disturbance. The same PCB as in Fig. 2 is 
used, and a direct calibration is performed in the reference 
plane of the IC. This is achieved by using a specific 
calibration kit having the same traces (impedance and length) 
as the ones of the DPI board, and with the same implemented 
capacitances. Furthermore, a fine characterization of the 
calibration kit must be performed to ensure correct calibration 
and measurements. 

Finally, the extracted S-parameters are transformed into a 
Spice model, using IdEM [13]. This corresponds to the PDN 
of the ICIM model.  

D. PCB modeling and extraction of the active power
It can be noted that it is difficult to obtain, from direct 

measurements, the power transmitted to the IC itself; in fact, 
the use of a bidirectional coupler makes it possible to estimate 
the power transmitted to the whole PCB (including losses in 
traces, in coupling capacitances, in bias tee inductances …) 
and not only to the IC itself. In addition to that, the typical 
measurement uncertainty of wattmeters can reach ± 100% for 
highly mismatched devices. 

Consequently, in order to estimate the power transmitted to 
the IC, a simulation based on a complete DPI set-up modeling 
is used. The PCB model is built up using well-known 
techniques: traces are modeled by transmission lines, devices 
by their equivalent model taking into account their parasitic 
elements, and the device under test by its PDN. The model 
displayed in Fig.4 corresponds to the DPI test on the 12V pin 
in the reference configuration. The amplifier, battery, LISN, 
coaxial cables and oscilloscope input impedance involved in 

the test are also replaced by their equivalent model in the 
simulation, as already explained in [5[6][7][14]. 

A simulation performed with a 0 dBm incident source 
provides the complex voltage and current in the pin under test. 
The active power can be then obtained from: 

IUIUPactive
**

2
1    (1) 

Seeing that the incident power triggering a failure and the 
actual power transmitted to the device for a 0 dBm incident 
power are both known, and that all models are linear, the 
active power threshold mentioned in Sect. II.B can be deduced. 

From now on, all required data are available and will then 
be combined in order to generate the model. 

E. Validation of the model
The first step of model generation consists in validating all the 
assumptions previously made. 
The first assumption deals with linearity. In order to check it 
out, comparisons between measurements and simulations of 
the S21 parameter are performed for different configurations, 
and for an incident power close to the failure level (typically 3 
dB below). This can be achieved by connecting port 1 of the 
VNA to the amplifier input, injecting into the 12V pin, and 
connecting port 2 on the LIN pin. This makes it possible to 
check out if the input impedance and the equivalent transfer 
impedance of the IC are still linear for such an injected power. 
An example is provided in Fig. 5. On this result, it can be 
noted that a 42-dB amplifier is used only up to 1 GHz, which 
explains the important variation observed at this frequency. 
Moreover, some oscillations are observed on measurements 
and not on simulations. They are due to the important 
reflected power into the amplifier which is not matched to 50 

 anymore. It can be deduced that the assumption of linearity 
is valid up to 3 GHz, and that the complete simulation model 
is correct. This task is generally achieved for several 
configurations (such as S21 measurements with injection and 
measurement on the same pin, with the pin impedance in 
parallel) in order to come to a complete validation.
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Fig. 4  Modeling of the DPI test set-up 
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Fig. 5  Validation of the transfer function 

 
Then, the active power criteria used to predict immunity in 
other configurations must be validated. Using the same 
model as in Fig. 4, modified according to the configuration 
to be estimated, the incident power required to reach the 
maximum power transmitted to the device which triggers a 
defect, in this second configuration, can be computed. In 
the case of the 100 pF capacitor, the results in Fig. 6 are 
obtained. Between 0 and -10 dBm (RF generator), some 
discrepancies between simulations and measurements are 
observed, due to the saturation effect of the amplifier which 
was not taken into account in this analysis. Nonetheless, 
these results demonstrate that the method can be validated. 
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Fig. 6  Comparison between measurement and prediction  

IV. CONCLUSION AND PERSPECTIVES 
In this paper, only partial results were given for a LIN 

transceiver, but these one are representative of the quality 
and accuracy obtained for the characterization of other pins 
(transfer function and immunity prediction). Other devices 
such as transistors, logic ICs (74HC08, 74HC14), other 
LIN transceivers, and voltage regulators, have been 
modeled up to 3 GHz as well, with the same quality. 

A very interesting similar general trend was observed on 
the frequency behavior of the active power causing a 
malfunction on all these circuits. Average levels for some 
of the devices quoted above are plotted in Fig. 7. It can be 
noticed that this active power is generally constant in low 
frequency and increases linearly above a given frequency. 
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Fig. 7  Limit of the active power for several devices 

 
These observations must be confirmed with other ICs 

but, nevertheless, provide interesting perspectives for the 
reduction of experimental characterization and the 
development of a semi-empirical approach to model 
generation, in the same manner as in the ICEM model. 
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