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Abstract— This paper describes a model of current propaga-
tion on single conductor line which does not have explicit return
path. As a fundamental element, we use the current on a finite
length straight line and we derive the electric field caused by
the current. Using models consists of the fundamental element,
we obtain an integral equation in the complex frequency domain
based on the boundary conditions on the conductor surface. The
time domain current and charge waveforms are obtained by the
numerical Laplace transform. The method figures out the source
of electric field on the conductor surface and makes clear the
mechanism of the current propagation based on the recursive
induction of the current. First, we apply the proposed method
to a uniform cylindrical single conductor line and clarify the
mechanism of current propagation without explicit return path.
Next, we analyze the case that the radius of single conductor line
changes at a point and confirm the reflection and transmission
phenomena. The mechanism of these phenomena is revealed by
the charge distribution.

I. INTRODUCTION

It is well known that radiated emissions due to common-
mode is very important for the noise problem [1], [2]. The
common-mode which has no explicit return path produces
strong emissions. In order to clarify the mechanism of the
common mode propagation, it is essential to model the current
propagation without explicit return path.

As a fundamental model of the current propagation without
explicit return path, we consider a single conductor line.
Several modes on infinite single conductor line were originally
studied by Sommerfeld [3] and G.Goubau analyzed the surface
waves in detail [4]. Recently, the current propagation on a
semi-infinite single conductor line with a current source was
studied in order to reveal the transient phenomena in time
domain [5]. However, the model in [5] analyzes only uniform
single conductor line since the model is based on the thin wire
approximation. In order to clarify the mechanism of reflection
and transmission on nonuniform single conductor line, we
propose a novel model which consists of finite length line
currents and accumulated charges.

II. ELECTRIC FIELD CAUSED BY CURRENT PROPAGATION

ON FINITE LENGTH STRAIGHT LINE ELEMENT

As a fundamental element of current, we consider the
current on a finite length straight conductor line as shown
in Fig.1. The length of the line is ΔL. We assume that at
t = 0 a step current of magnitude I0 with a velocity of light
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Fig. 1. Current on finite length straight conductor line
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Fig. 2. Electric field Ez at a point P(z, r).

c is applied to the origin and that the current is removed at
z = ΔL. The current on the line is represented by

I(z, t) = I0H(t− z/c){H(z)−H(z −ΔL)}, (1)

where the function H(·) is a Heaviside step function. From
the relation between charge density and current, charge density
ρ0 = I0/c is also applied to the origin and removed at z =
ΔL. The charge density ρ due to the current I is

ρ(z, t) = ρ0H(t− z/c){H(z)−H(z −ΔL)}. (2)

The conservation of charge is satisfied except at the origin and
at z = ΔL.

Let us consider the electric field caused by the current. The
z-component of the electric field Ez at a point P(z, r) shown
in Fig.1 is given by Fig.2 [6].

1) 0 ≤ t < t1 ≡
√

z2 + r2/c
Because the sphere of influence does not arrive at P,

Ez = 0. (3)

2) t1 ≤ t < t2 ≡ (ΔL +
√

(z −ΔL)2 + r2)/c
Because only the sphere of influence from the origin
arrives at P, the electric field Ez is equal to

E1 = − I0

4πε0c

1√
z2 + r2

. (4)
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Fig. 3. Model of single conductor line
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Fig. 4. Approximated surface current and accumulated charge.

3) t2 ≤ t
Because the sphere of influence from z = ΔL arrives at
P, the electric field Ez is equal to

E2 =
I0

4πε0c

{
1√

z2 + r2
− 1√

(z −ΔL)2 + r2

}
. (5)

Although the expressions (4) and (5) do not contain ρ 0

explicitly, the effect of ρ is included by the relation ρ0 = I0/c.
If we apply a current I(t) which satisfies I(t) = 0, t < 0

instead of the step current I0, Eq.(3), Eq.(4) and Eq.(5) are
replaced by

Ez(t) =
1

4πε0c

{
I(t− t1)√

z2 + r2
− I(t− t2)√

(z −ΔL)2 + r2

}
.

(6)

III. MODEL OF SINGLE CONDUCTOR LINE

We consider a cylindrical perfect conductor line with radius
a and length L shown in Fig.3. In order to analyze the current
propagation on the single conductor line, we divide the line
into NL equal cells, i.e., the cell length ΔL and the boundary
of the cells ξn are

ΔL =
L

NL
, ξn = nΔL (n = 0, 1, · · · , NL). (7)

We assume that the current propagates on the surface of
the conductor line and that the current on the nth cell is
represented by the forward propagating current I f

n(t) on z =
ξn and the backward propagating current I b

n(t) on z = ξn+1,
where n = 0, 1, . . . , NL − 1.

In order to satisfy the conservation of charge on the bound-
ary of the cell, we assume that charge Q̂n(t) is accumulated

on z = ξn, where n = 1, 2, . . . , NL. The accumulated charge
is defined by

Q̂n(t) =
∫ t

0

{
I f
n−1

(
t′ − ΔL

c

)
− I f

n(t′)

−Ib
n−1(t

′) + Ib
n

(
t′ − ΔL

c

)}
dt′. (8)

We approximate the surface current I f
n and Ib

n and the
accumulated charge Q̂n respectively by a set of Nϕ currents
I f
n/Nϕ and Ib

n/Nϕ on the line elements and a set of Nϕ point
charges Q̂n/Nϕ as shown in Fig.4.

IV. ANALYSIS BY LAPLACE TRANSFORM

Let us consider the electric field Ez at a point P(z, r). From
Eq.(6), the electric field Ẽzn produced by the propagating
current I f

n and Ib
n is represented by

Ẽzn =
−1

4πε0c

Nϕ∑
m=1

⎧⎨
⎩I f

n

(
t− Rn

c

)
NϕRn

−
I f
n

(
t− ΔL+Rn+1

c

)
NϕRn+1

+
Ib
n

(
t− ΔL+Rn

c

)
NϕRn

−
Ib
n

(
t− Rn+1

c

)
NϕRn+1

⎫⎬
⎭ , (9)

where

Rn =

√
r2 + a2 − 2ra cos

2πm

Nϕ
+ (z − ξn)2. (10)

Additionally, electric field Êzn produced by the accumulated
charge Q̂n is represented by

Êzn(z, r, t) = − 1
4πε0

∂

∂z

Nϕ∑
m=1

1
Rn

Q̂n

(
t− Rn

c

)
Nϕ

. (11)

We derive an integral equation based on the boundary
condition on the surface of the perfect conductor:

Ez(z, r) =
NL−1∑
n=0

Ẽzn(z, r) +
NL∑
n=1

Êzn(z, r) = 0 (12)

When the current I0(s) is applied to the origin, the scaled
integral equation in complex frequency domain is represented
by

NL−1∑
n=1

Nϕ∑
m=1

{
−e−Rns

Rn
+

e−(ΔL+Rn+1)s

Rn+1

+
(

e−Rns

Rn

)′ 1
s
−
(

e−Rn+1s

Rn+1

)′ e−ΔLs

s

}
I f
n(s)

+
NL−1∑
n=1

Nϕ∑
m=1

{
−e−(ΔL+Rn)s

Rn
+

e−Rn+1s

Rn+1

−
(

e−Rns

Rn

)′ e−ΔLs

s
+
(

e−Rn+1s

Rn+1

)′ 1
s

}
Ib
n(s)

= −
Nϕ∑

m=1

{
−e−R0s

R0
+

e−(ΔL+R1)s

R1

−
(

e−R1s

R1

)′ e−ΔLs

s

}
I0(s), (13)
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where (
e−Rns

Rn

)′
= − (1 + Rns)(z − ξn)

R3
n

e−Rns. (14)

We solved the integral equation numerically in the complex
frequency domain and obtain the waveforms in time domain
using the numerical inversion of the Laplace transform [7].

V. RESULTS OF ANALYSIS

A. Uniform single conductor line

We consider a single conductor line with radius a =
0.05mm and length L = 60mm. When a step current of
magnitude 0.5A is applied to the conductor line, the calculated
current In and charge Qn defined by

In(t) = I f
n (t)− Ib

n (t) (15)

Qn(t) = {I f
n(t) + Ib

n(t)}ΔL/c + Q̂n+1(t) (16)

are respectively shown in Fig.5 and Fig.6, where T = 200ps.
From these figures we can confirm that the step current with
distortion propagates. The charge accumulation in the vicinity
of the origin in Fig.6 is linked to the distortion of the current
waveform. Since the accumulated charge Q̂n on the boundary
is less than 10−2pC, almost all charge Qn is the charge density
in the cell.
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Fig. 5. Current In on uniform single conductor line.
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Fig. 6. Charge Qn on uniform single conductor line.
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Fig. 8. Electric field caused by each the cell current on P.

In order to clarify the mechanism of the current propagation,
we consider the electric filed Ez on the surface point P in the
NL

2 th cell shown in Fig.7. We pick up 5 cells which are named
section 1 to 5 around the NL

2 th cell, and show the electric field
which each the cell current produces on the point P in Fig.8.
The sections 1 to 3 generate positive Ez on P and the currents
in the section 4 are induced by the positive Ez . After the rising
edge comes in the section 5, the section 5 generate negative
Ez on P. Thus, the positive electric field induces the current on
the rising edge and the recursive induction causes the current
propagation[5].

B. Connection of single conductor lines with different radius

We consider as second example that the radius of the single
conductor line changes at L/2. From z = 0 to z = L/2,
the radius a1 is equal to 0.05mm. From z = L/2 to z = L,
the radius a2 is equal to 0.4mm. Fig.9 and Fig.10 represent
the propagation of current and charge, respectively. We can
confirm the reflection and transmission of current propagation
at z = 30mm. Since the radius a2 is larger than a1, large
positive current is transmitted to the large radius line and large
positive current is reflected to the small radius line.

In order to clarify the mechanism of the transmission, we
consider the electric field Ez on the surface point P in the
NL

2 th cell shown in Fig.11. As we analyzed in the previous
example, we pick up 5 cells and calculate the effect of the
current and the charge. Fig.12 and Fig.13 represents the effect
of each cell current and each charge on the boundary of
the cell, respectively. From these figures, the charge on the
boundary C causes strong electric field on P, and large current
is transmitted to the line with large radius.
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Fig. 9. Current In on the single conductor line. The radius of the line
changes at z = 30mm.
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Fig. 10. Charge Qn on the single conductor line. The radius of the line
changes at z = 30mm.

VI. CONCLUSION

This paper proposed a method for analyzing transient phe-
nomena on single conductor line which does not have explicit
return path. Using the electric field caused by the current on
the finite length line element which is analytically calculated,
we derived the integral equation of the cell currents. Using
the proposed method, we reveal the mechanism of the current
propagation based on the model in which the current and
charge causes the electric field and the electric field causes the
induced current. Especially, we clarified that the reflection and
transmission of current are generated at the connection of the
single conductor lines with different radius and that the charge
on the connection mainly induces the current transmission.
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