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Abstract— In order to establish emission limits to protect radio 
systems, the effect of the non-Gaussian properties of interference 
on the performance of coded radio transmission systems should 
be taken into account. In this paper, a simple closed-form 
expression for the bit error probability (BEP) of convolutional 
codes is developed for coherent BPSK systems assuming that the 
interfering signal is expressed by Middleton’s class A formula, 
which is a commonly used model of non-Gaussian interference. 
It is shown that the sum of identically distributed independent 
class A random variables becomes a new class A variable. Using 
this result, a simple expression for BEP is derived for Viterbi 
decoding with an unquantized soft decision. The validity of the 
expression is demonstrated by numerically simulating the BEP of 
a communication link. It is found that BEP after decoding under 
impulsive interference approaches that under Gaussian noise as 
the free distance of the code increases. 
Key words: Non-Gaussian interference, Convolutional code, 
Viterbi decoding, Bit error probability 

I. INTRODUCTION 
In order to develop appropriate limits of electromagnetic 

disturbances for protecting wireless services, it is necessary to 
evaluate the impact of non-Gaussian interference on the 
transmission quality of the disturbed wireless system. In 
particular, a method of evaluating the effect of impulsive 
interference is important because such interference may cause 
a severer degradation in the bit error probability (BEP) than 
Gaussian noise having the same power [1]. For the purpose of 
developing a disturbance limit, a simple closed expression is 
desirable, rather than an exact but complicated mathematical 
formula or the conduction of a time-consuming numerical 
simulation. For wireless systems not employing error 
correction coding, possible methods of evaluating the effect of 
impulsive interference have been developed such as amplitude 
probability distribution (APD) [2-3] and impulsive correction 
factors [4].  

On the other hand, analyzing the BEP of coded systems is 
much more complicated than that of uncoded systems. In the 
case of Gaussian noise, mathematical expressions for BEP are 
known. However, a simple expression for the BEP of a coded 
system has not yet been obtained for most types of non-
Gaussian interference mainly due to the complexity of the 
formulation. 

On the basis of the above background, in this paper we 
derive a simple closed-form expression for the BEP of 
convolutional codes. For this purpose, we focus on the 
impulsive interference modelled by Middleton’s class A 
formula [5]. It is known that the class A model can represent 
various types of non-Gaussian interference from highly 
impulsive to nearly Gaussian. The model has also been used 
for improving the performance of coding schemes in the 
presence of impulsive interference. In [6] and [7], the trellis-
coded modulation and the turbo code under a class A 
interference were studied, respectively, and approximated 
forms of a metric were derived for improving the performance. 
In these papers, however, the BEP performance was obtained 
by conducting numerical simulations of the transmission 
scheme without deriving a mathematical expression. 

For the purpose of discussing the BEP under class A 
interference, it is first shown that a sum of identically 
distributed independent class A variables becomes a new class 
A variable with a reduced impulsiveness. Using this result, an 
expression for the BEP under class A interference is derived 
for a BPSK system with convolutional coding decoded with 
an unquantized soft decision. On the basis of this expression 
and some results of numerical simulations, we discuss the 
effect of the free distance of the code on the BEP after 
decoding. 

II. PROBABILITY DISTRIBUTION OF SUM OF INDEPENDENT 
CLASS A RANDOM VARIABLES 

Middleton’s class A formula gives the probability density 
function (pdf) of the in-phase (I) or quadrature (Q) component 
of an interfering signal. The pdf ( )zpZ  and complementary 
cumulative distribution function (ccdf) ( )zfZ of the I or Q 
component, z, are given by 
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where A is the impulsive index, which is given by the average 
number of received pulses per unit time multiplied by the 
average pulse width. σ2 denotes the total noise power. Γ 
represents the ratio of Gaussian noise power σ2

G to impulsive 
noise power σ2

I [1].  
The shape of the ccdf curve of the interfering signal provides 

useful information for discussing the BEP under impulsive 
interference. In particular, the BEP of a binary phase shift 
keying (BPSK) system with coherent detection, on which we 
focus in the present paper, is expressed by the ccdf of the I 
component of the interfering signal. As shown in Fig. 1, the 
ccdf curve has a plateau if the interference is impulsive (i.e., A 
< 1 and �A < 1). The height and width of this plateau are 
approximately (1-e-A)/2 and 20log(1+1/�A)1/2 in dB, 
respectively [8]. When the interfering signal is highly 
impulsive, the height and width can be further approximated 
by A/2 and 20log(1/�A)1/2, respectively. If A >1 or �A >1, on 
the other hand, the ccdf curve does not have an apparent 
plateau. When �A >>1, the class A interference approaches 
purely Gaussian noise. Thus, we can roughly estimate the 
BEP of a BPSK system under class A noise with the given 
parameters, A and Γ, by sketching the ccdf curve. 

 
In order to investigate the effect of the coding on the BEP, 

we consider the properties of a sum of class A random 
variables (RVs). Let us assume an RV given by the sum of K 
independent class A RVs as follows: 
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Note that all RVs, Zl, are assumed to be identically distributed 
as given by (1) because we analyze the BEP under stationary 
class A interference in the subsequent sections.  

 It is known that a class A RV given by (1) can be understood 
as a Gaussian RV with zero mean and variance σm

2 
conditioned on a Poisson RV, m [9]. Considering that the sum 
of independent Gaussian RVs is a Gaussian whose variance is 
the sum of those of the original RVs, and that sum of Poisson 
RVs is also a Poisson RV, we can show that the sum of class 
A RVs given by (3) is also a class A RV (the derivation is 
shown in the Appendix). The pdf of the sum, X, is given by 
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It should be noted that the new class A RV, X, has an 
impulsive index increased by the factor K, which means that 
the new class A RV is less impulsive than the original ones. 
When K tends to infinity, the pdf in (4) approaches the 
Gaussian pdf, which can also be understood by considering 
the central limit theorem. 

III. BEP OF CONVOLUTIONAL CODES UNDER CLASS A 
INTERFERENCE 

In the following, the BEP for a coherent BPSK system with 
convolutional codes is studied. We assume a Viterbi decoder 
with a metric optimized for AWGN that takes unquantized 
soft decisions. A commonly used upper bound of the BEP for 
convolutional codes is based on a union bound and the 
transfer function [10]. 
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where k is defined by the code rate Rc =k/n of the code, under 
the assumption that k and n have no common divider, and dβ  
denotes the number of incorrectly decoded information bits 
for each possible incorrect path that merges with the correct 
path. ( )dP2  and freed  represent the pairwise error probability 
and the minimum distance of the code, respectively. This 
bound is commonly truncated to the first term to derive an 
approximation for the BEP [10].  

( )free2b
free dP

k
P dβ

≈ .             (7) 

The pairwise error probability P2(d) for arbitrary interference 
is obtained as 
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Fig. 1 Complementary cumulative distribution functions (ccdfs) of 
Middleton’s class A noise and Gaussian noise. 

Class A (solid lines): a) (Γ=0.1, A=0.001, variance σ2=1),  
b) (0.1,0.01,10), c) (0.1,0.1,100), d) (0.1,1,1000) 

Gaussian (dotted lines):  e) σ2=1, f) σ2=10, g) σ2=100, h) σ2=1000.
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where Ec is the code bit energy related to the bit energy Eb as 
Ec=RcEb, nl denotes the interference contribution, and 

( ) ( )�
=
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d

l
lndX

1

Re . Here we can see that P2(dfree) is equal to 

the ccdf of X(d). In particular, for AWGN, 
( )free0free2 )/(2)( dRNEQdP cb= . We assume that the interference 

can be modelled as stationary class A noise, i.e., Re(nl) is 
identically class A distributed and that each nl is independent. 
If the assumption of independence is not satisfied, a bit 
interleaver is necessary to randomize the order of the 
demodulated bit sequence. Under the above assumptions, we 
can make use of the result in (5) and derive P2(d) as 
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which is very similar to the BEP of an uncoded BPSK 
system [10]. 
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Using (7), the BEP of the coded BPSK system is obtained as 
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Note that the variances 2~
Mσ and 2~

mσ  in (9) and (10) 
represents the interference power normalized by the 
bandwidth of the matched filter of the demodulator, B, and 
hence they have the unit of watt/Hz. Using the bit rate R and 
coding rate Rc, (10) and (11) can be rewritten in terms of C 
(carrier power) and I (interference power) on the substitutions 
of the following relations:  
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When the coded and uncoded BPSK systems have an 
identical bandwidth, i.e., Bcode=Buncode=B0, the corresponding 
class A parameters, A, Γ, and 2~σ , for the coded and uncoded 
systems are the same. Note that B0 represents the reference 
bandwidth in which the class A noise parameters are defined. 
From (12) and (13), we have Rcode=RuncodeRc, Ccode=CuncodeRc, 
and Icode=Iuncode. Then the results of the substitutions are
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(Constant bandwidth case: Ccode=CuncodeRc, Icode=Iuncode) 

On the other hand, when the coded and uncoded systems 
have the same bit rate, i.e., Rcode=Runcode, we have 
Buncode=BcodeRc=B0Rc, Cuncode=Ccode, and Iuncode=IcodeRc. 
Furthermore, note that the class A noise at the output of the 
matched filter of the uncoded system is less impulsive than 
that of the coded system because the uncoded system in this 
case has a narrower bandwidth as mentioned above. 
According to [11], the impulsive index of the uncoded system 
is increased to A/Rc, where A is defined in the reference 
bandwidth B0. Thus, the BEP is given by 
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(Constant bit rate case: Cuncode=Ccode, Iuncode=IcodeRc) 
It is known that each infinite summation in (14)-(17) can be 

well approximated by the sum of the first three terms (m or M 
= 0, 1, and 2) for practical applications [8]. 

IV. DISCUSSION 
Numerical simulations were conducted in order to examine 

the accuracy of the expression for BEP (11). In Fig. 2, BEPs 
obtained by the simulations for three different convolutional 
codes are shown as a function of 2~/σbE . The codes have the 
code rate Rc=1/2 and the generator polynomials A=[5 7], 
B=[133 171], and C=[4335 5723], with (dfree, β(dfree))=(5,1), 
(10,36), and (15, 76), respectively. In all cases, class A 
interference with A=0.1 and Γ=0.1 is assumed. The results 
demonstrate that (14) provides a good approximation to the 
BEP. It is also found that the BEP curves for class A 
interference become closer to those for AWGN as the free 
distance of the code increases. 

 
 

Fig. 2 Numerically simulated and theoretically calculated BEPs for three 
different convolutional codes. Marks: simulated, solid lines: 
calculated. Thick lines: class A interference (A=0.1, Γ=0.1), thin 
lines: AWGN. Code A: [5 7], dfree=5, β(dfree)=1. Code B: [133 171],
dfree=10, β(dfree)=36. Code C: [4335 5723], dfree=15, β(dfree)=76. 
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The last statement can also be explained by studying the 
expression of BEP. As is shown in (14), the BEP can be 
approximated directly by the ccdf of X(dfree) in the case of 
coherently detected BPSK. To analyze the BEP, we recall the 
fact that the plateau width of the ccdf of class A interference 
in an impulsive case can be approximated as 10log(1+1/�A) in 
dB. As ΓA increases, the plateau width approaches zero, and 
the ccdf approaches that for a Gaussian noise as mentioned in 
section II. In the following discussions, we consider the values 
of 2~/σbE , γnG and γAWGN, necessary to achieve a certain BEP in 
class A interference and AWGN, respectively. By comparing 
the class A ccdf curve in Fig. 1 with the Gaussian ccdf that 
has the same variance (for example, curves a and e), we can 
conclude the following. 
1) In the probability range above the plateau, a class A ccdf 

generally has lower values than the corresponding 
Gaussian ccdf, which means that Gaussian noise causes 
greater degradation than class A interference. 

2) In contrast, the BEP in class A interference below the 
plateau is higher than that in AWGN. This means that for a 
certain BEP, 0AWGNnG ≥− γγ . 

3) However, the difference γnG - γAWGN  approaches zero as 
dfree increases (i.e., the impulsive index dfreeA increases),  
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since AWGNnG γγ →  as ∞→nd , where nddd <<< �21 . 
This can also be explained by the central limit theorem. For 
these reasons, the BEP of coherent BPSK systems caused by 
class A interference will approach that of AWGN as the free 
distance of the code increases. However, it should be noted 
that the rate at which γnG approaches γAWGN depends on the 
parameters of the class A noise, A and �.  

V. CONCLUSION 
A simple closed-form expression for the BEP of 

convolutional codes is developed for the coherent detection of 
BPSK under class A interference. On the basis of the 
expression, we discussed the effects of the class A parameters 
and the free distance of the code on the BEP after decoding. 

APPENDIX 
The characteristic function (CF) of each class A RV lZ  is 

[12]  
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The CF of X can be derived by multiplying the CF of each 
class A variable as follows:  
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By letting M=m+n+...+p, (A2) can be rewritten as 

E
pnm

KAeF
pm

MpmM

MAK
X ��

≥
=++

∞

=

−
��
�

�
��
�

�
Γ+

Γ−=
0,,

0

22

!!!
1

)1(2
exp)(

�
� �

σξξ , 

( ) ( ) ( )
pnm

AAA
E ��

�

�
��
�

�
Γ+

−
��
�

�
��
�

�
Γ+

−
��
�

�
��
�

�
Γ+

−≡
12

exp
12

exp
12

exp
222222 σξσξσξ

� . (A3) 

Note that the inner sum in (A3) is taken for all sets of 
nonnegative integers (m, n, ... , p) that satisfy m+n+...+p=M. 
Using the multinomial theorem, (A3) can be modified as  
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which yields the probability distribution of a class A RV 
given by (4) and (5) that has a variance and impulsive index 
changed from σ2 to K σ2 and from A to KA, respectively, 
compared with those of the original distribution.  
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