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Abstract—We investigate the existence of Intrinsic Lo-
calized Modes (ILMs) in nonlinear one-dimensional Klein-
Gordon chains. We use the Lagrangian averaging approach
parameterizing ILM by several slow-varying variables, and
apply the averaging directly in the action principle. Our
preliminary studies yield results for ILM dynamics in ac-
cordance with those obtained by other methods.

1. Introduction

Since the pioneering paper by Sievers and Takeno in
1988 [1], there has been extensive work on the exis-
tence and stability properties of Intrinsic Localized Modes
(ILM). These modes are characterized by localized vibra-
tions in a lattice and are due to both the nonlinearity and
discreteness of the system. Several approaches have been
used to investigate the existence of ILMs in various sys-
tems that support them. In [2] a one-dimensional lattice
with nearest-neighbor purely anharmonic (quartic) inter-
actions was considered. It was noted that a large fam-
ily of time periodic solutions can be found with an ansatz
un(t) = (−1)nφnU(t), describing standing oscillations. In
[3] the existence of ILMs was proved in nonintegrable
generic one-dimensional Hamiltonian lattices. In the same
work, a class of Fermi-Pasta-Ulam (FPU) chains was con-
sidered in more detail. A map of the Fourier coefficient
of the ILM was analyzed, with the ILM corresponding to
homoclinic points in the phase space of this map. More
recently, in [4] discrete breathers in diatomic FPU type lat-
tices were shown to exist and their stability was analyzed.
Their existence was proved by continuation of periodic so-
lutions from a homogeneous lattice potential. In [5] the
existence of breathers in diatomic FPU lattices was proved
via a discrete spatial centre manifold reduction.

Variational approaches have been used to find soliton so-
lutions in the context of the discrete Nonlinear Schrödinger
equation [6, 7]. According to the variational principle, an
ansatz with a finite number of parameters is substituted into
the Lagrangian whose critical points correspond to the so-
lutions of the dynamic equation of the system. In the con-
text of nonlinear Klein-Gordon lattices, which is the focus
of this work, a mathematical proof of breather existence in
Klein-Gordon chains was given in [8] for small coupling
in a general class of oscillator networks. The existence of
solutions of fixed period was formulated as a problem of

finding zeros of an operator in a Banach space using the
implicit function theorem and then it was proved that they
decay exponentially in space. In [9] the existence of multi-
breathers was proved in the case of weak coupling using as
starting point the limit where the oscillators are not coupled
and the periodic solutions can be found by phase portrait
techniques. Then, these trivial solutions were continued as
a function of the small coupling constant using the implicit
function theorem. In [10] small Hamiltonian perturbations
of Hamiltonian oscillator networks were considered and an
effective Hamiltonian on the submanifold of periodic or-
bits was introduced. The critical points of the effective
Hamiltonian subject to the action (which is preserved) cor-
respond to exact periodic solutions. The linearization of
the effective Hamiltonian about the critical points gives the
linearized dynamics of the full system to leading order in
the perturbation.

In this contribution we investigate the existence of ILMs
in a Klein-Gordon chain with a Morse onsite potential and
interactions beyond the nearest neighbor. The choice of
the Morse potential has applications to DNA [11, 12] while
longer range interactions are believed to more accurately
represent the dynamics of DNA [13, 14]. We will follow a
method suggested originally in [15] for a different system
of coupled oscillators.

2. Localized solutions of lattice systems
2.1. General considerations

We shall first consider a rather general system described
by a Lagrangian L of coupled nonlinear oscillators with the
state described by the variables x = (x1, . . . xN), i.e., L =

L(x, ẋ). The Euler-Lagrange equations are derived from the
minimal action principle δS = δ

∫
Ldt = 0, leading to

d
dt
∂L
∂ẋ
−
∂L
∂x

= 0 . (1)

Suppose we wish to find the localized solutions that are ap-
proximated by a set of parameters Q = (Q1, . . . ,Qm), i.e.,
x = x(Q, t). The length of vector Q, i.e., the number of
parameters, is assumed to be much smaller than the dimen-
sion of x. We shall assume that the parameters Q can de-
pend on the slow time variable τ = εt with ε � 1, as well
as fast time t, and being periodic in t with the period 2π.
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There are several approaches to this multi-scale problem.
One approach would be to average (1) over one fast period
directly. This averaging, usually done in the Hamiltonian
counter-part of (1), has a long and storied history. It is par-
ticularly useful in the context of averaging for perturbed
Hamiltonian systems [16], which addresses small pertur-
bations to an integrable Hamiltonians. On the contrary, the
Lagrangian averaging approach outlined here seeks to find
slow changes of time-periodic solutions to non-integrable
Hamiltonians by averaging directly in the action princi-
ple first. While being less rigorous in nature, at least at
this point, in nevertheless allows useful insights in ILM be-
haviour. This approach is also easy to generalize to include
multiple parameters. The disadvantage of this approach, on
the other hand, is the appearance of artificial singularities
in the equations when some of the parameters reach a crit-
ical value; for ILM, such a singularity is manifested when
the amplitude of ILM reaches zero.

Let us denote the average Lagrangian as L̄ as follows:

L(Q,Q′) =
1

2π

∫ 2π

0
L
(
x(Q(εt), t), ẋ(Q(εt), t)

)
dt , (2)

where Q′ := dQ/dτ. We then seek to minimize the action

δS = δ

∫
L(Q,Q′)dτ = 0 (3)

This approach can be justified by the following rather sim-
ple consideration, which is also useful for understanding its
limitations. Formally, we can write the action as

S =

∫ ∞

0
Ldt =

∞∑
n=0

L(εn) ' ε
∫ ∞

0
L(τ)dτ . (4)

Does it mean that whenever δS = 0, we also have δS = 0?
Unfortunately not, since it depends on the variations we
choose. In the general variational principle δS = 0 the vari-
ation δx is chosen arbitrary. However, since S depends on
the parameters Q and their time derivatives, the variations
δQ are chosen arbitrarily, which means that δx has to be of
a certain shape. For the case considered here, taking δQ ar-
bitrary means that δx follow from the ILM ansatz, i.e. have
to be localized about the center in a particular way. Thus,
we can make the following statements about the limitations
of the method considered here:

1. If the averaged system describing localized solutions
is unstable, the full system is also unstable.

2. If the averaged system is stable, no information about
the full system can be inferred.

3. Slowly varying solutions of the averaged system will
likely have nearby solutions of the full system, but the
method gives no information about their stability.

With these cautionary remarks in mind, let us proceed to in-
vestigate the slow dynamics of parameters Q(τ). The stan-
dard Euler-Lagrange approach gives

δS = 0 ⇔
d
dτ

∂L
∂Q′
−
∂L
∂Q

= 0 . (5)

It is also useful to rewrite the equations of motion in the
Hamiltonian form as follows. Define the generalized mo-
menta P and the corresponding Hamiltonian H as

P =
∂L
∂Q′

, H = P ·Q′ − L(Q,Q′)
∣∣∣
Q′=Q′(P,Q) . (6)

We shall note that our approach does not involve friction.
For systems where friction and forcing is important, for ex-
ample, nano resonator arrays [17], this method needs to be
modified. Alternatively, we refer the reader to Van der Pol
approach developed in [18]. It is important to note that our
method is approximate, but valid for arbitrary amplitude,
and should be understood as complimentary to the finite
amplitude expansion method developed in [19].

2.2. Applications to DNA models

Let us now proceed to discuss a concrete example of that
is related to ILM motion, namely, a dynamical DNA model.
The system is written as follows. Let us approximate the
dynamics of molecules in a DNA chain i = (1, 2, . . . ,N)
by a scalar variable ui, and take x = (u1, . . . , uN). The La-
grangian is [13, 14]

L =
1
2

u̇2
n −

3∑
i=1

Wi

(
un, un+i

)
− V(un) , (7)

where V(x) = D(e−ax − 1)2 is the onsite Morse potential,
having a single minimum at the origin, depth D and width
a−1. The harmonic couplings with the first, second, and
third neighbors are given by

Wi(x, y) =
ki

2
(x − y)2, 1 ≤ i ≤ 3, (8)

with coupling strengths ki, 1 ≤ i ≤ 3. The full Euler-
Lagrange equations (1) give

ün + V ′(un) +

3∑
i=1

∂Wi(un, un+i)
∂un

+

3∑
i=1

∂Wi(un, un−i)
∂un

= 0. (9)

2.3. Static ILMs as approximate localized solutions

Let us show how to use Lagrangian averaging techniques
to describe approximate dynamics of ILM formation in (9).
Consider the case of static ILM with ansatz

un(t) = A(−1)ne−λ|x0−n| sinωt. (10)

Here, the parameters have the following meaning

• un is the deflection of the oscillator;
• A is the amplitude of the peak;
• λ is the sharpness of the ILM;
• x0 is the center of the ILM (not necessarily an integer,

time independent);
• ω is the temporal period;
• n0 is the oscillator left of x0, i.e. n0 ≤ x0 ≤ n0 + 1.

If a particular static ILM exists, the amplitude A, width
λ and the frequency ω are chosen dynamically, and thus
should be considered as unknowns. We shall investigate
the cases where Q has dimension 1, by taking Q to be one
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of the parameters (A, λ, ω) and allow it to change with time
while others are being fixed. We shall call this case the
one-parameter model; because of the Hamiltonian struc-
ture of the system, it can be solved analytically. Next, we
shall investigate the case when two parameters of the triple
(A, λ, ω) are allowed to vary and one remains fixed, there
are three possible combinations, namely Q = (A(t), λ(t)),
Q = (A(t), ω(t)) and Q = (ω(t), λ(t)). Finally, the most
general case is that of the three parameter model Q =

(A(t), λ(t), ω(t)). For the case of briefness and because of
space limitation, we will sketch the solution and outline
some results, with the full paper following these proceed-
ings expanding on this topic.

3. One-parameter models
We shall only outline the computations for Q = A(t).

The other cases when Q = ω(t) and Q = λ(t) are con-
sidered similarly, but the formulas are considerably more
complex. We start with computing the kinetic energy as
K = 1

2
∑+∞

n=−∞ u̇2
n. with un given by (10), and setting x0 = 0.

After some algebra, the kinetic energy averages to

K =
1
2

F0(x0, λ)
(
A′2(τ) + ω2A2(τ)

)
, where (11)

F0(x0, λ) :=
e−2λ(x0−n0) + e−2λ(n0+1−x0)

2(1 − e−2λ)
. (12)

Next, we average the potential energy

Π =

+∞∑
n=−∞

V(un) +

3∑
i=1

ki

2
(un − un−i)2 (13)

using the ansatz (10). After some tedious calculations we
arrive to the following expression:

Π =
A2(t)

2

3∑
n=1

kn[4F0 − 2(−1)ne−nλ(2F0 + n)] + V(A) (14)

Averages of the Morse potential can be computed exactly
in terms of modified Bessel functions I0(x) as

V(A) = D
(
I0(2aA) − 2I0(aA) + 1

)
. (15)

Note that for large A, the Bessel function and hence V(A)
increase exponentially. Thus, the averaged Lagrangian for
the system Q = A(t) is

L =
1
2

F0A′2 −
(
Π(A) − ω2F0A2 + V(A)

)
(16)

The generalized momentum is then simply PA = A′/F0 and
the motion is Hamiltonian with the generalized coordinates
(A, PA) and Hamiltonian

HA =
P2

A

2F0
+

(
Π(A)−

ω2

2
F0A2+V(A)

)
:=

P2
A

2F0
+U(A) , (17)

where the term in the parentheses in (17) denoted as U(A)
is the effective potential energy. According to the gen-
eral considerations, the A = 0 critical point is unstable if
U′′(0) < 0. The solutions in the (A, PA) plane are gener-
ated by HA =const, and since V(A) increases exponentially
with A, they are all bounded. Since V

′′
(0) = Da2 = ω2

0,
the base frequency of a single oscillator, the condition for
instability is given by

A

P A
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Figure 1: Level sets computed with the Hamiltonian for
values of parameters: k1 = 0.025, k2 = 0.05, k3 = 0.05,
x0 = 0, D = 0.05, a = 5, ω = 0.9ω0 ' 1.42 and λ = 2.

ω2F0 >

3∑
n=1

kn[4(1 + e−λ)F0 − (−1)ne−nλ] + ω2
0 . (18)

However, we need to remember that for ILMs, ω and λ are
not independent but are chosen dynamically, and are not
known a priori. The only physical restriction is that the
frequency of ILM has to be less than the natural linear fre-
quency of a single oscillator ω0. In Figure 1 we present an
unstable case for a particular case with physical parameters
chosen to coincide with those in [13, 14]. As we see, a
small perturbation will make the ILM grow to a finite value
and experience a long-term dynamics similar to that of a
pendulum. Interestingly, this pendulum-like motion is in
agreement with recent results for ILM dynamics obtained
by a combination of numerical and analytical methods [20].

4. A summary of two parameter case studies

We now consider the ansatz
un(t) = A(τ)(−1)ne−λ(τ)|x0−n| cosωt, or (19)

sun(t) = A(τ)(−1)ne−λ|x0−n| cosω(τ)t . (20)

Using general considerations in Sec. 2.1, and taking Q =

(A, λ) in the first case and Q = (A, ω) in the second case,
we can write the Hamitonian equations for the canonical
variables (P,Q). The formulas are unfortunately too com-
plex to be presented here, but we outline the general feature
of the system. As it turns out, the solution of the gener-
alized momenta P in terms of generalized coordinates Q′
possesses a singularity (vanishing determinant) at A = 0,
λ = 0 and ω = 0. Ideally, a solution would remain bounded
and non-singular for all τ > 0, however, we have yet failed
to find these solutions. This may not be a problem in view
of general considerations presented in Sec. 2.1, since the
full solution does not have to follow the averaged solution
for all τ > 0, and only the instability of A = 0 is relevant.

In what follows, we shall investigate the system (19), the
system (20) is studied in a similar way. For any λ0 > 0,
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Figure 2: Stability boundary for ω2 obtained from equa-
tions (18) (solid red line) and (21) (dashed blue line).

(A = 0, λ = λ0) is a steady state. To linearize about this
state, we posit A(τ) = δA1eµτ, λ = λ0 + δλ1eµτ and as-
sume 0 < δ � 1, taking only the linear terms in δ. The
dispersion relation, arising from the condition that nontriv-
ial solutions (A1, λ1) exist, depends only on µ2 because of
the time reversal symmetry, and is in fact full square of an
affine function of µ2. Thus, the only way the instability can
occur is for µ to cross zero, which happens when

e8λ0
(
ω2 − 2 (k1 + k2 + k3)

)
− 4e7λ0 k1 + e4λ0 (k1 − 4k2)

+2e5λ0 (k1 − 4k3) + 6e3λ0 k3 − e6λ0 (k1 − 5k2 + k3)

+k3 − e6λ0
(
e2λ0 − 1

)
ω2

0 + e2λ0 k2 = 0 (21)

(This formula was obtained using the symbolic package
Mathematica). While this expression is considerably more
algebraically complex than (18), it shares similar features,
being linear in the coefficients ki and frequencies ω2

0 and
ω2. In the future, we shall investigate the correspondence
of the instability boundary obtained from different models.
In Figure 2, we plot the stability boundaries for the values
of ω obtained from (18) and (21). As expected, the one-
parameter model over-estimates the stability region.
5. Conclusions

In this paper, we have outlined some preliminary studies
for simplified Lagrangian-averaged models for the theory
of ILM motion. These models are applicable to a wide
range of ILM motion and, in general, have a potential to
capture the full dynamics quite well. However, more stud-
ies of the long term dynamics of the simplified models ob-
tained by these methods are necessary for further applica-
tions, which will be undertaken in our future studies. Here,
we concentrated mostly on ILM emergence, also of partic-
ular interest are propagating ILMs and pinning on defects.
In future work we will consider the minimum number of
parameters necessary for a quantitatively accurate descrip-
tion of ILM formation.
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