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Abstract—In previous work of the authors, experimen-
tal response data for a slender rotor system with gyro-
scopically coupled lateral and torsional motions were pre-
sented along with a computational model that was used
to predict and explain phenomena observed in the exper-
iments. Here, the authors expand upon this work, develop
a reduced-order system to study the system torsion dynam-
ics in the presence of continuous rotor-stator contact, and
carry out analysis to develop insights into the origins of
the frequency-response components observed in the exper-
iments and simulations.

1. Introduction

Torsional and lateral motions of a rotor system can be
strongly coupled when the rotating shaft becomes slender
and/or with the addition of discrete mass elements along
the shaft. Furthermore, if the mass addition is not at the
mid-span of the shaft, the lateral motions can also be cou-
pled through gyroscopic terms [1]. In the authors’ previous
work, they investigated the torsion response of a slender
shaft with gyroscopic coupling while the rotor was in con-
tinuous contact with a stator. Torsional motions were fur-
ther excited by friction forces that arise due to contact with
the stator. In addition to the experimental data presented
in reference [2], a distributed parameter model was devel-
oped and used to understand the experimentally observed
dynamics. In the current effort, the authors further exam-
ine these equations in a similar manner to their approach
method outlined in study [3]. This is done in order to de-
velop a single degree-of-freedom, reduced-order equation
for focusing on the torsional motions while the rotor is in
continuous contact with the stator of this system.

2. Summary of Previous Work

2.1. Experimental Arrangement and Results

A photograph of the experimental arrangement is shown
in Figure 1. A DC motor turns a stiff drive shaft and self-
centering three jaw chuck. The chuck holds a slender alu-
minum 6061 string that is vertically suspended and has a
rotor secured to its bottom end. This rotor is enclosed
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Figure 1: Experimental apparatus used to study dynamics
of rotor-stator systems, which was originally presented in
reference [2].

within a circular stator with an initial gap clearance δ. A
slip ring is fitted onto the stiff shaft, so that sensors may
be secured to the rotating structure. To collect the partic-
ular experimental data shown here, strain gages are placed
in a rosette configuration in order to get a measure of the
torsional motions.

For certain initial conditions and driving speeds, the ro-
tor remains in continuous contact with the stator while
the rotor whirls at a constant rate. The Fourier trans-
forms of the torsion strain response associated with for-
ward whirling (rotor whirl motions in the same direction
as the motor rotation) are presented in Figure 2 (a), while
Fourier transforms of the torsional strain response associ-
ated with backward whirling (rotor whirl motions in the
opposite direction of motor rotation) are provided in Figure
2 (b). It has been confirmed both experimentally and nu-
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(a) Experiments: Forward Whirling (b) Experiments: Backward Whirling 

(c) Full Model Simulations: Forward Whirling (d) Full Model Simulations: Backward Whirling 

Figure 2: Summary of the results presented in study [2]. (a) Experimentally obtained torsion strain spectra during forward
whirling. (b) Experimentally obtained torsion strain spectra during backward whirling. (c) Simulation predictions of
the torsion response spectra for forward whirling motions. (d) Simulation predictions of the torsion response spectra for
backward whirling motions.

merically that during forward whirling, the rotor whirl fre-
quency is approximately equal to the motor drive frequency
(ω f or ≈ Ω), where Ω is the drive speed in rad/s and ω f or

denotes the forward whirling frequency in rad/s. Through-
out this work, ω and Ω, are angular frequencies that have
units of rad/s, while frequency quantities denoted with f
have units of Hz. It has been verified that during backward
whirling, the whirl frequency of the rotor may be expressed
in terms of the system parameters (ωback ≈ −

R
δ
Ω). From

the experimental spectra shown in Figures 2 (a) and (b), the
prominent frequency components during forward whirling
are at the first torsion natural frequency ( ft), the drive fre-
quency ( fd), and twice the drive frequency (2 fd). During
backward whirling, components at the drive frequency ( fd)
and the whirl frequency plus the drive frequency ( fw + fd),
dominate the system response. It is noted that the fd com-
ponent in the forward whirling response arises due to a
small eccentricity in the chuck, and this has not been cap-
tured in simulations.

2.2. Model Predictions and Comparisons with Experi-
ments

After constructing energy expressions for a shaft mod-
eled as a spatially continuous structure and the rotor mod-
eled as a discrete mass at the boundary, a set of three non-
linear partial differential equations and ten boundary condi-
tions were derived. A Galerkin projection procedure, with
a single mode approximation for each equation in bending
and torsion, was used to cast the system of partial differen-
tial equations into the following set of ordinary differential
equations

a1V̈ + a2V̇ + a3ΩẆ + a4V + a5(Θ̇Ẇ + Θ̈W) −
meφθφvΘ̈ sin(β)

∣∣∣
x=L − meφvβ̇

2 cos(β)
∣∣∣
x=L = φvFv

∣∣∣
x=L (1)

b1Ẅ + b2Ẇ + Ωb3V̇ + b4W + b5Θ̇V̇ +

meφwφθΘ̈ cos(β)
∣∣∣
x=L − meφwβ̇

2 sin(β)
∣∣∣
x=L = φwFw

∣∣∣
x=L (2)

c1Θ̈ + c2Θ̇ + c3Θ + c4(V̈W + V̇Ẇ) +

meẄφwφθ cos(β)
∣∣∣
x=L − meV̈φvφθ sin(β)

∣∣∣
x=L = φθFtanR

∣∣∣
x=L

(3)
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where
β = φθΘ + Ωt

In equations (1) - (3), V ≡ V(t), W ≡ W(t), and Θ ≡ Θ(t)
are the temporal amplitudes associated with the shape func-
tions φv ≡ φv(x), φw ≡ φw(x), and φθ ≡ φθ(x), respectively.
A more detailed description of the Galerkin procedure used
to obtain these equations, as well as the explicit forms of
the coefficients of equations (1) - (3) may be found in the
authors’ work [2]. The external forces in equations (1)-(3)
are determined as follows. When in contact with the stator,
the rotor is subject to a normal force, which is given by

Fnorm =

{
0 for Γ ≤ δ
Kc(Γ − δ) for Γ > δ

(4)

where
Γ =

√
w(L, t)2 + v(L, t)2

Additionally, a tangential force, which is proportional to
the normal force, is generated as

Ftan = µ · Fnorm (5)

where the friction coefficient

µ = −
2
π

arctan(ε f vrel)
[
µs − µd

1 + δ f |vrel|
+ µd

]
(6)

This choice of friction model captures the different friction
magnitudes between static friction and dynamic friction.
Here, the slope of the frictional force is negative near vrel =

0, but becomes a constant away from 0. The authors have
generated Figures 2 (c) and (d) by numerically integrating
equations (1)-(3).

3. Reduction of Equations of Motion

Following a procedure that was originally outlined by
the authors in [3], the system of equations given by equa-
tions (1)-(3) are reduced to a single nonlinear differential
equation which is meant for studying the torsional motions
during steady-state whirl. For constant whirl frequencies,
the lateral motions of the rotor at x = L may be prescribed
as

v(L, t) = (δ + δp) cos(ωt + φo) ≈ δ cosωt

w(L, t) = (δ + δp) sin(ωt + φo) ≈ δ sinωt (7)

where the penetration depth δp of the rotor into the stator is
approximately zero. Considering small torsional deforma-
tions, the respective Taylor series expansions are carried
out with the trigonometric terms in Θ. After substituting
these expansions into the governing equations, the follow-
ing reduced-order equation is obtained to focus on the tor-
sion dynamics:

c1Θ̈ + c2Θ̇ +
[
c3 + φθ(L)meδω2 cos ((ω −Ω)t)

]
Θ =

c4ω
2 sin (2ωt) + φθ(L)meδω2 sin ((ω −Ω)t) + φθ(L)FtanR (8)

Through the earlier imposed assumptions δp ≈ 0, and using
equation (4), the normal force is zero. However, assuming
the stator to be much stiffer than the rotor, the normal force
may be found in terms of the reaction force as the rotor
whirls in contact with the stator. This approximate form is
taken to be

Fnorm ≈ Mδω2 − Keqδ (9)

where it has been assumed that δ(M + m) � me and Keq

is the equivalent stiffness of shaft. This equation is given
consideration in the remaining sections for both forward
and backward whirling.

4. Forward Whirling

As previously mentioned, in the special case of forward
whirling ω ≈ Ω, equation (8) can be written as

c1Θ̈ + c2Θ̇ +
[
c3 + φθ(L)meδω2

]
Θ =

c4ω
2 sin (2ωt) − φθ(L)FtanR (10)

Equation (10) has interesting features which are explained
next. As discussed in study [3], equation (10) has a cen-
trifugal stiffening term. However, due to the low drive
speeds in the given experiment, this effect is small and un-
measurable. In other experiments at high drive speeds, re-
searchers have observed a stiffening effect during steady
whirl with constant stator contact [4]. The reduced-order
equation also has an external forcing frequency of 2Ω =

2ω, which originates solely from the gyroscopic coupling
terms in equation (1)-(3). In the absence of friction, Ftan =

0, equation (10) takes the form of a linear oscillator with
harmonic forcing, associated with which a resonance will

occur if 2Ω ≈ ωt =

√
c3+φθ(L)meδω2

c1
≈

√
c3
c1

. This reso-
nance behavior is apparent in both the experimental results
shown in Figure 2 and in the results obtained from simula-
tions of the full model (equations (1)-(3)) shown in Figure
2, as well as in the numerical results for the reduced-order
model (equation (10)) provided in Figure 3(a). It is noted
that near resonance, the original assumption of small an-
gular deformations breaks down and equation (10) is no
longer a reasonable approximation for the system dynam-
ics in that region. Further, even in the absence of forcing
originating from gyroscopic coupling (such as a planar ro-
tor, for instance), one can still obtain limit-cycle motions
from the form of equation (10), as was found in the au-
thors’ previous work [3]. Finally, a component at the tor-
sion damped natural frequency is observed in the experi-
ments shown in Figure 2(a), where the first torsion damped
natural frequency is approximately equal to the undamped
torsion frequency due to the light structural damping of the
system. The response component at the first torsion natu-
ral frequency is not apparent in the simulations as the static
coefficient of friction value was selected to be small. The
response amplitude at this natural frequency is expected to
be more prominent for other friction parameter values.
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5. Backward Whirling

During backward whirling, the whirl speed of the lateral
vibrations is approximatelyω ≈ −R

δ
Ω, and equation (8) can

be rewritten as

c1Θ̈ + c2Θ̇ +
[
c3 + φθ(L)meδω2 cos (αt)

]
Θ =

c4ω
2 sin (2ωt) − φθ(L)meδω2 sin (αt) + φθ(L)FtanR (11)

where

α = (ω −Ω) = −Ω(1 +
R
δ

) (12)

The frequency α physically represents the whirl speed,
less the drive speed. This excitation frequency plays a
role in equation (11) through external and parametric ex-
citation terms. In both the experimental results shown in
Figure 2 (b), simulations of the full model (equations (1)-
(3)) shown in Figure 2 (d), and simulation results of the
reduced-order model (equation (11)) provided in Figure 3
(b), the response component at the whirl frequency plus
the drive frequency is the dominant component (note that
Fourier transforms presented here do not distinguish be-
tween positive and negative frequencies). Additionally, the
external forcing at frequency 2ω from the gyroscopic cou-
pling is still present in equation (11) and in the simulation
results shown in Figure 2 (d). However, this component is
not discernibly large in the experimental results shown in
Figure 2 (b), and in the numerical results obtained from the
reduced-order equation and shown in Figure 3 (b).

6. Concluding Remarks

In previous work, the authors presented experimental
data and numerical simulation results for a rotor-stator sys-
tem, wherein the rotor experienced coupled lateral motions
with large deformations. Here, the governing equations of
motion were simplified under a given set of assumptions
for continuous rotor-stator contact in order to develop a
reduced-order system to focus on phenomena associated
with experimentally observed torsional motions and nu-
merical simulations of the full system of equations. It was
determined that in both forward and backward whirling,
an external excitation component arises due to gyroscopic
coupling terms in the model. As a consequence, during
forward whirling, even when driving the motor below the
first torsion natural frequency, resonance behavior can oc-
cur provided 2Ω = ωt. Similarly, resonance behavior can
occur in backward whirling if Ω(1 + R

δ
) = ωt.
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