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Abstract— A Korean child and an European child head voxel 
models were considered to inspect if the SAM phantom offers 
conservative SAR estimation for children’s head exposure to a 
mobile phone. The sizes of the head models and the ear 
protrusion were compared. The cheek and tilt positions in the 
standards for SAR evaluation were used and the ear-compressed 
condition for more real situation was also simulated. As a result, 
the SAR level in the European child head model when the ear 
was compressed under the tilt position was very high and 
exceeded that in the SAM phantom. The factors to affect the 
SAR result are discussed. 

I. INTRODUCTION 
In most of countries, mobile phones are presently tested in 

the SAM phantom prescribed in IEEE or IEC standards [1],[2]. 
Therefore, the SAM phantom should provide a conservative 
estimation in a local SAR result to cover most of population 
who use a mobile phone.  

The SAM phantom had been designed in order to produce 
the peak spatial-average SAR conservative for the actual value 
in the heads of a significant majority of persons during normal 
use of mobile phones. Therefore the ear protrusion of the 
SAM phantom had been selected to be very thin compared 
with a normal adult’s although most of the dimensions have 
been derived from the 90th-percentile male head data of U.S. 
Army[1]-[4]. 

Meanwhile a Korean child voxel model was developed 
based on MR images of a 7-year-old volunteer and the body 
sizes were adjusted to the 50th-percentile values of 7-year-old 
Korean males [5]. In this paper, the head part was used to 
investigate if the SAM phantom offers a conservative SAR 
result for children’s head exposure to a mobile phone 
operating at 835 MHz. An European child head model [6] 
which has very thin auricles was also used to achieve this end.  

The FDTD technique is used for numerical analysis and the 
grid size of 1x1x1 mm3 is constantly employed in all cases.  

II. MODELS AND TEST POSITIONS 

A. Head Models 
The used head models and their dimensions are in Fig. 1. 

The left one of Fig. 1 (a) is the developed 7-year-old Korean 
child head model (KR_7y model) which has been adjusted to 
the standard size (the 50th-percentile dimensions). The 6-year-

old European child model (EU_6y model) and the SAM 
phantom are compared with the Korean child model in head 
and auricle sizes in Fig. 1 (b). The voxel size of all the head 
models was modified to be 1x1x1 mm3. 

The types of classified tissues are different between the two 
child models; the number of tissues whose dielectric 
properties are known is 16 and 11, respectively. The fat tissue 
is thicker in KR_7y model.  

As shown in Fig. 1 (b), the ear protrusion of the SAM 
phantom is very small and a little thinner compared with that 
of EU_6y model. We can see roughly the differences in the ear 
protrusion in Fig. 1 (a). The ear protrusions of the head 
models were estimated at the halfway height of each right 
auricle. This is one of major factors to affect a local SAR 
result in head models exposed to a mobile phone.  

 
(a) Head models 

 

 
(b) Comparison of head and auricle sizes. 

Fig. 1. Head models. 
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B. Test Positions 
A simple phone model operating with a monopole antenna 

at 835 MHz was positioned against the head models. It is the 
generic phone model of [7], having a monopole antenna and 
the power was applied at the gap between the antenna and a 
conducting plane inserted into a dielectric box. The cheek and 
tilt positions were used and the rotating angles were a little 
different with the head models due to the dissimilarities in the 
head and auricle shapes. Fig. 2 shows the phone-positioned 
head models for the two test positions. 

The compressed ear for each head model was also 
considered for the test positions. The process for 
implementing was a little different from each other for head 
models and positions. Consequently from the position in Fig. 
2, the phone model has been pressed additionally by about a 
few millimeters against the ear or/and the cheek. 

Fig. 3 compares the distance between the feed point of the 
phone and head tissue. We can see that the space order 
between head tissue and phone antenna in Fig. 3 is not exactly 
in accord with the ear protrusion order: it is the largest for the 
Korean child model and the smallest for the SAM phantom. 
Since the SAM phantom includes the dielectric shell all over 
the surface of the phantom, the separation between the phone 

and liquid is bigger than the outside appearance. It is 
noteworthy that all the separated distances for the European 
child model are smaller than those for the SAM phantom. 

After positioning phone model and generating the 
combined mesh, the auricles of the heterogeneous models 
were distinguished from the head tissues because the 
maximum local SAR should be estimated in only the head 
tissue, not the auricle. 

III. RESULTS 
Fig. 4 represents the 10 g averaged peak SARs in the head 

models. SAR levels for the cheek position are higher than 
those for the tilt position. The SAR value for the ear-
compressed condition of each child model is also compared 
with the result that the ear is not compressed as shown in Fig. 
2. The difference in the SAR values is not significant except 
the case of the 6-year-old European child head under the tilt 
position.  

In order to implement a compressed ear, in some case, the 
phone model was not moved straightly to be closer to the head 
model: for the ear-compressed condition under the cheek 
position of the 6-year-old model, the phone was shifted 
towards the head after it was rotated by 4 degrees to be farther 
from the cheek. If the phone is pressed to the head directly 
from the cheek position, the cheek is excessively getting flat. 
We press the mobile phone usually on our ear, not on the 
cheek in order to listen carefully to the sound from the 
earpiece of the phone. 

Consequently the 6-year-old European head model 
produced a very high 10 g peak SAR value when its ear was 
compressed under the tilt position. It exceeds that in the SAM 
phantom while SARs in the 7-year-old Korean head model are 
much lower. As was stated above, the ear protrusion is a 
critical factor to affect the SAR result for mobile phone 
exposure. The ear protrusion of the European model is very 
small compared with that of the Korean model. These results 
show that the SAM phantom does not necessarily offer 
conservative estimation for children’s exposure to a mobile 
phone. Even in the case that the ear was not compressed, the 
SAR gaps between in the 6-year-old model and in the SAM 

Fig. 4. SAR comparison in child and SAM models. 

 
(a) Cheek 

 
(b) Tilt 

Fig. 2. Test positions. 
 

Fig. 3. Separated distance between the phone and head tissue. 
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phantom are only 17 and 11 %, for the cheek and tilt positions, 
respectively.  

Another factor to have an effect on the peak SAR result 
seems to be the internal morphology of a head model. Fig. 5 
shows the internal view of the head model and the 
corresponding point SAR distribution on the plane parallel to 
the vertical axis of the phone model, where produces the 10 g 
peak SAR.  

The corresponding colors of some major tissues are shown 
below the figures. It is certain that the portion of the fat tissue 
is getting relatively different according to the height of the 
plane in Fig. 5. Nevertheless, the fat tissue takes much broader 
area in the Korean child head model than in the European 
model. The locations of the 10 g peak SARs of the two 
models are noticeably different and this phenomenon similarly 
appeared in case of the cheek position as well. 

The conductivity as well as permeability of the fat tissue is 
much lower compared with other tissues, especially the 
muscle. It might cause lower SAR in the fat tissue and higher 
SAR in the muscle although the muscle tissue is positioned 
farther from the phone. Meantime, the Korean child model has 
little muscle just below the skin layer. Therefore the 10 g peak 
SAR in the Korean model occurred in the muscle deeply from 
the surface. 

In conclusion the 6-year-old European model considered in 
this paper has two conditions to produce relatively higher 
SAR: one is a small distance between the phone and head 
models and the other is to have a smaller quantity of fat tissue 
in the head. 

Since the material of the SAM phantom is homogeneous, 
the peak SAR obviously appears on the surface of the 
phantom. 

IV. CONCLUSION 
The extensive use of mobile phones is accompanied by 

public concerns about possible effects on human health as a 

result of exposure to radio-frequency radiation from the 
phones. Especially the issue of whether children are more 
sensitive to electromagnetic fields emitting from mobile 
phones has been a hot topic among many researchers. It has 
led many studies on comparison of SARs between adult and 
child head models [6]-[12].  

Meantime the SAM phantom should provide a conservative 
local SAR result for most of population who can use a mobile 
phone since currently mobile phones for the public are tested 
in the SAM phantom as prescribed in IEEE or IEC standards. 

In this paper, a Korean and an European child head models 
developed based on real magnetic resonance images were 
considered to investigate whether the SAM phantom, the 
standard phantom for compliance test of mobile phones 
provides a conservative estimation for children’s exposure to a 
mobile phone.  

As a result, a very high 10 g peak SAR was produced in the 
6-year-old European model under the tilt position which the 
ear was compressed and it exceeded the value in the SAM 
phantom. The two child models are different in the ear 
protrusion and the internal morphology. All of which seem to 
draw a high SAR in the European child head model.  

The results in this paper suggest that the SAM phantom is 
not necessarily conservative for children’s exposure. However, 
variability in internal and external morphology for children 
should be surveyed and simulations for more various child 
models are needed in order to validate this result. 
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