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Abstract— Finite difference method is used to calculate the
via-plate capacitances for vias with pad. Due to the symmetric
structure, the solving domain is reduced to a rectangular ρ − z
region. Boundary conditions along the region are discussed. Both
barrel-plate and pad-plate capacitances are studied with various
geometric parameters. The results could be used as validations
for possible analytical expressions of these capacitances.

I. INTRODUCTION

Vias are widely used, tinny structures connecting traces and
planes in different layers of a multilayer printed circuit boards
or packages. As an inevitable discontinuities along traces and
sources for simultaneous switching noise along power/ground
planes, accurate model for vias is critical for both signal
integrity and power integrity analyses.

The parasitic capacitance between a via and the surrounding
plate has been extensively studied using both numerical and
analytical analysis [1]-[3]. However, these studies are usually
for a via crossing a single plate, and the parasitic capacitance
is called ’excess capacitance’ used in a π-type circuit model
for the via lumped circuit model.

Recently, a physics-based via circuit model is proposed
for signal link path analysis and its feasibility has been
demonstrated[4][5]. In this model, a via is represented as a π-
type circuit where the via barrel is a short circuit; two via-plate
capacitances are used to describe the displacement current
from the via barrel to top/bottom planes and the impedance
between two planes is used to denote the return current path.
The impedance of parallel planes has been extensively studied.
On the other hand, an analytical formula has been derived for
the evaluation of the via-plate capacitance. Formula in [6],
however, is only valid for those vias without a pad, i.e. with
same barrel and pad radius.

In this paper, quasi-static finite difference method (FDM)
is used to calculate the via-plate capacitance for the vias with
different pad and barrel radius. Due to the symmetry of the
via circular structure, the solving domain is reduced to a two
dimensional rectangular region. The impact of the pad on the
via-plate capacitance will be discussed. It will also provide a
validation tool for the possible analytical expression for a via
with pad.

II. THE NUMERICAL METHOD FOR THE BARREL-PLATE

CAPACITANCE OF A VIA WITH PAD

Fig. 1 shows a via with pad crossing two parallel planes.
The barrel, pad and anti-pad radii are r, a and b, respectively.
The separation of two planes is h. Between the planes is the
dielectric material with a permittivity of εr. Due to the reason
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Fig. 1. Geometry of a via crossing a plane pair.

discussed in [5] and [6], the middle surface between two planes
as shown in Fig. 1 satisfies the boundary condition of a perfect
magnetic conductor (PMC). Moreover, the circular symmetry
of the via structure can further reduce the solving domain
into a rectangular region in ρ − z plane where ρ ∈ [r, R]
and z ∈ [0, h/2] as shown in Fig.2. The artificial boundary
ρ = R is chosen to terminate the solving domain. Since the
static field decay inversely from sources, the final capacitance
would converge when ρ = R is far away from the anti-pad.
From our simulation , R ≥ 3 max{b, h} is a practical selection
for acceptable simulation.

Fig. 2 indicates that for a via with a pad, there not only
has the barrel-plate capacitance Cb but also the pad-plate
capacitance Cp. The total capacitance from the via to the
plate should be the summation of Cb and Cp. The coaxial
capacitance Ca can be obtained using analytically as the
transverse electromagnetic mode is assumed in the anti-pad.
Therefore, only Cb and Cp are discussed here.
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Fig. 2. Computational domain and the boundary conditions for finite
difference method.

The potential φ distributed in the solving domain satisfies
the following Laplace equation for axis-symmetric structure
[4]
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∂

∂ρ

(
ρ
∂φ

∂ρ

)
+

∂2φ

∂z2
= 0 (1)

and the boundary conditions at the solving domain are speci-
fied as shown in Fig. 2 that

φ = 1 {ρ = r, z ∈ [0, h/2]}⋃{ρ ∈ [r, a], z = 0}; (2)
∂φ

∂n
= 0 {ρ ∈ [0, R], z = h/2}⋃ρ = R, z ∈ [0, h/2];(3)

φ = 0 ρ ∈ [b, R], z = 0; (4)

φ =
ln(b/ρ)
ln(b/a)

ρ ∈ [a, b], z = 0. (5)

Notice that the boundary condition of (5) is used for the
potential in the anti-pad, as the transverse electromegnetic
mode is assumed in the anti-pad. Our experience shows that
this can speed up the convergence comparing with the case
using Neumann boundary in the anti-pad, especially for the
vias with pad.

Following the conventional finite difference scheme, the
differential equation in (1) can be discretized into following
difference equations

φi,j = Aφi+1,j + Bφi−1,j + Cφi,j+1 + Dφi,j−1 (6)

where subscript i, j denotes the grid index for each node, and

the coefficients are obtained by

A =
[

1
(Δρ)2

+
1

2ρi,jΔρ

]
/F (7)

B =
[

1
(Δρ)2

− 1
2ρi,jΔρ

]
/F (8)

C =
1

(Δz)2
/F (9)

D =
1

(Δz)2
/F (10)

F =
1

(Δρ)2
+

1
(Δz)2

(11)

where Δρ and Δz are grid steps along ρ and z directions,
respectively. When Δρ = Δz = h, i.e. same grid step is
selected for both ρ and z directions, the difference scheme in
(6) can be simplified as

φi,j =
1
4
(φi+1,j + φi−1,j + φi,j+1 + φi,j−1) +

h

8ρi,j
(φi+1,j + φi−1,j) (12)

Although (6) is more general difference scheme, the simplified
one of (12) is adopted in this paper. The potential value at each
grid point is renewed in each iteration using (12). The iteration
will stop when all the potentials become stable according to
a specified criterion. The charge density along the via barrel
and pad can be calculated as

σe = −εrε0∇φ · n (13)

where n is the normal vector on the via barrel and pad. The
barrel-plate capacitance Cb and the pad-plate capacitance Cp

are the charges along the via barrel and pad, respectively. Then
we have

Cb = −εrε0

∫ h/2

0

2πr
∂φ

∂ρ
|ρ=rdz (14)

Cp = −εrε0

∫ a

r

2πρ
∂φ

∂z
|z=0dρ (15)

where the differential operators can be replaced by the differ-
ence ones in numerical calculations.

III. NUMERICAL EXAMPLES AND DISCUSSIONS

The finite difference method can solve the vias with or
without pad. The via-plate capacitance for the vias without
pad is calculated to validate the implementation of the method
(Matlab programming language is used) as both numerical and
analytical data are available in [6]. Fig. 3 shows the iteration
convergence in solving the difference equations for an example
of a via without pad. It can be seen that different meshing grid
steps results in different convergence rate. For sparse mesh
grid (0.20 mil), it only takes less than 2000 iteration steps to
get a stable but not very accurate value. On the other hand,
for the fine mesh case (0.05 mil), it requires at least 16,000
steps to converge, which is too time consuming. Therefore,
there is a balance between the accuracy and efficiency for
the via capacitance calculation using FDM. In the following
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Fig. 3. Convergence of the barrel-plate capacitance calculation using the finite
difference method. (r = a = 4, b = 14, h = 4.5, Unit : mil; εr = 3.84)

simulations, the meshing grid step is selected to be 0.1 mil
and the iteration number is set to be 7000.
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Fig. 4. Convergence of the barrel-plate, the pad-plate and total via
capacitances (Cb, Cp and Cb + Cp. (r = 4, a = 8, b = 20, h =
4.5, Unit : mil; εr = 3.84)

Table. I compares the via-plate capacitances obtained by
the 3-D commercial software (CST EM Studio), the analytical
formula as well as the 2-D finite difference method here. It
can be seen that the results from FDM with 7000 iteration
steps agree very well with the results using the analytical
solutions (less than 3% differences). Moreover, the 2D FDM
is much faster than the 3D commercial electro-static solver
although it is very slower than the analytical formula derived
in [6]. These examples demonstrate the accuracy of the FDM

TABLE I

COMPARISON OF THE CONCENTRIC VIA-PLATE CAPACITANCE VALUE

CALCULATED BY ELECTROSTATIC SOLVER, CST EM STUDIO, THE

ANALYTICAL FORMULA OF [6] AND THE FDM PROPOSED HERE

(hu = hd=0.2286 MM (9 MILS), t=0.0254 MM (1 MIL); εr = 3.84. )

case radii (mm) Cvia (fF) (Elapsed time:seconds)
a b CST EM Studio [6] FDM

1 0.1016 0.3556 40.7 (303) 42.6 (0.15) 43.2 (27.8)
2 0.1016 0.4318 36.2 (301) 37.2 (0.15) 37.7 (34.4)
3 0.1016 0.5080 32.8 (308) 33.4 (0.15) 34.1 (41.2)
4 0.1524 0.3556 58.2 (380) 61.7 (0.15) 62.9 (26.0)
5 0.1524 0.4318 48.9 (365) 51.2 (0.15) 52.3 (33.1)
6 0.1524 0.5080 43.2 (308) 44.6 (0.15) 45.6 (39.2)
7 0.2032 0.3556 84.7 (431) 89.6 (0.15) 91.6 (24.8)
8 0.2032 0.4318 66.1 (425) 69.9 (0.15) 71.5 (30.7)
9 0.2032 0.5080 55.7 (365) 58.4 (0.15) 59.7 (38.1)

implementation.
Fig. 4 gives an example of the iteration convergence of the

FDM for a via with pad. Both the barrel-plate and pad-plate
capacitances (Cb and Cp) decrease and converges to stable
values with the increase of iteration steps.

Fig. 5 compares the trends of Cb and Cp with different
pad radius a with fixed other parameters such as the barrel,
pad and anti-pad radii r, b and b. It can be seen that in the
case of a = r, there is no pad-plate capacitance .i.e. Cp = 0.
With the increase of the pad radius, Cp increases while Cb

decreases steadily. The total via capacitance first decreases
with pad radius and then increases as pad radius becomes
larger and larger.

Fig. 5. The barrel-plate and pad-plate capacitances versus the pad radius with
fixed other geometries. (r = 4, b = 20, h = 4.5, Unit : mil; εr = 3.84)

Fig. 6 presents the different variations of barrel-plate and
pad-plate capacitances with the separation of plates. Interest-
ingly, the pad-plate capacitance Cp quickly reaches a maxi-
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mum value when the via height or late separation h is large
enough. On the other hand, the barrel-plate capacitance C b

increase almost linearly with the plate separation h. In the
case of small plate separation, Cp dominates the via-plate
capacitance while in the case of large plate separation, Cb

is the main part of the parasitic capacitances from the via to
the plate.
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Fig. 6. The barrel-plate and pad-plate capacitances versus the plate separa-
tions with fixed other geometries. (r = 4, a = 8, b = 20, Unit : mil; εr =
3.84)

The potential distributions for a via without and with a pad
have been depicted in Fig. 7 (a) and (b) respectively. For these
two examples, the potentials change rapidly in the anti-pad
region and its extension region along z-directions. For a via
with pad, Fig. 7 (b) shows that the potentials near the anti-
pad have more complicated contours. This means that the pad
radial extension causes complex electric field distributions.

IV. CONCLUSIONS

Finite difference method is used to extract the via-plate
capacitance for vias with pad by solving electro-static equa-
tions. The boundary conditions are specified in the anti-pad
and artificial boundaries are set to terminate the computa-
tional domain. Accuracy and efficiency have been discussed
by comparing with the analytical formula for vias without
pad. Variations of the parasitic capacitances with geometric
parameters are investigated. Moreover, it can also be used as
validations for other extraction approaches for the vias with
pad.

REFERENCES

[1] T. Wang, R. F. harington, and J. R. Mautz, “Quasi-Static analysis of a
microstrip via through a hole in a ground plane, ” IEEE trans. Microwave
Theory Tech., vol. 36, no. 6, pp.1008-1013, Jun 1988.

[2] P. Kok, and D. De Zutter, “Capacitance of a circular symmetric model of a
via hole including finite ground plane thickness,” IEEE Trans. Microwave
Theory Tech., vol. 39, no. 7, pp. 1229-1234, July 1991.

0

5

10

15

20

25

050100150200250300

(a)

0

5

10

15

20

25

050100150200250300

(b)

Fig. 7. Potential distributions for a via (a) without (r = a = 4) and (b)
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