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Abstract— The impulsive electromagnetic response of a thin
metallic coating on a dielectric half-space is analytically in-
vestigated. Both TM- and TE-polarized electromagnetic fields
in the configuration are excited by an impulsive line source.
The problem is solved with the help of approximate thin-

film boundary conditions and the Cagniard-DeHoop technique.
Closed-form space-time expressions for electromagnetic fields are
found, numerically evaluated and discussed with regard to the
pulsed excitation of surface plasmon phenomena.

I. INTRODUCTION

The coupling of electromagnetic waves to free electron

plasma in metals becomes of great importance to nanopho-

tonics with a wealth of promissing applications in sensorics

[1], bio-photonics [2], data storage [3] or optical waveguides

[4], [5]. A proper understanding of related surface phenomena

requires the mathematical analysis of generic configurations

where the influence of the system parameters on the per-

formance shows up in closed-form analytic expressions that

characterize the physical behavior. The simplest configuration

in this context is a planar interface between a metal and a

dielectric where the excitation of so-called surface plasmon po-

laritons is usually demonstrated with the help of a frequency-

domain plane-wave solution of macroscopic electromagnetic

field equations [6], [7]. Although the pulsed-laser excitation

of surface-plasmon resonance is commonly used in a variety

of experiments [8], [9], its thorough space-time mathematical

description, except for a few initial studies, is missing in

the literature. In this respect, Kooij has analyzed the pulsed

reflected field above a plasmonic half-space [10] and the time-

domain surface impedance of plasmonic half-spaces for plane-

wave incidence is investigated in [11].

In this paper the electromagnetic response of a thin plas-

monic coating on a dielectric support is found. To this end we

apply the concept of approximate thin-sheet boundary condi-

tions [12] together with the Cagniard-DeHoop (CdH) method

[13]. The method provides closed-form space-time expressions

describing relevant impulsive TE- and TM-polarized electro-

magnetic fields in the configuration. In them, time evolution

of electromagnetic field quantities at different observation

positions relative to the source point and their dependence on
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the metallic film/dielectric support parameters clearly show

up. As a consequence, the derived expressions allow us to

gain physical insights into the relevant surface/pseudo-surface

wave phenomena [14].

II. PROBLEM FORMULATION

The problem configuration is shown in Fig. 1. In it, the

position is localized by the coordinates {x1, x2, x3} with

respect to a fixed, orthogonal, right-handed Cartesian reference

frame. The time coordinate is denoted by t, ∗ denotes the time

convolution and ∂t is the partial differentiation with respect to

time.

x1

x3

d

line source

h

{σ(t), ǫ0, µ0}

D0 {ǫ0, µ0}

D1 {ǫ1, µ0}

vacuum

dielectric

thin metallic film

Fig. 1. Problem configuration.

The problem configuration consists of two unbounded do-

mains D0 and D1 joined by a metal layer of a vanishing

thickness d ↓ 0. Electromagnetic properties of D0 and D1 are

described by scalar electric permittivity and magnetic permit-

tivity {ǫ0, µ0} and {ǫ1, µ0}, respectively. The corresponding

electromagnetic wavespeeds are c0 = (ǫ0µ0)
−1/2 > 0 and

c0 > c1 = (ǫ1µ0)
−1/2 > 0. It is assumed that the metallic

layer presents a high contrast in its electric conductivity

described by the conduction relaxation function [15, Sec. 19.5]

σ(t) = ǫ0ω
2
P exp(−νCt)H(t) (1)

where ωP is the electron plasma angular frequency, νC is the

collision frequency, ǫ0 is the electric permittivity of vacuum

and H(t) is the Heaviside unit step function. The metallic sheet

supports electric current along x3 = 0 only and its thickness is

negligible with respect to the spatial support of the excitation

pulse generated by a magnetic line source placed in D0 at
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(x1, x3) = (0, h), h > 0. On account of the problem con-

figuration, excited electromagnetic fields are x2-independent.

Depending on the nature of the line source, two sets of elec-

tromagnetic components can be excited: 1) An electric current

line source generates TE fields {E2, H1, H3}; 2) A magnetic

current line source generates TM fields {H2, E1, E3}. The

line sources placed at (x1, x3) = (0, h) above the thin sheet

are defined via their electric and magnetic current volume

densities

{J2,K2}(x1, x3, t) = {i, k}(t)δ(x1)δ(x3 − h) (2)

respectively. Here, i(t) [A] and k(t) [V] are the source

strengths and δ(x) is the Dirac delta distribution. It is assumed

that {i, k}(t) = {0, 0} for t < 0. If the thin metallic film

presents a high contrast in electric conductivity, then the

approximate thin-sheet boundary conditions are

lim
x3↓0

ν ×E − lim
x3↑0

ν ×E = 0 (3)

for all t ∈ R and all x1 ∈ R and

lim
x3↓0

ν ×H − lim
x3↑0

ν ×H = GL(t)∗E(x1, 0, t) (4)

where ν is the unit vector in the x3-direction and the electric

conductivity of the sheet is given as

GL(t) = dσ(t) (5)

The thin-sheet high-contrast boundary conditions require that

dσ0[1 − exp(−νCt)] is of order O(1) as d ↓ 0 which

limits the minimal time width of the excitation pulse and

σ0 is the conductivity of stationary currents σ0 = ǫ0ω
2
P /νC

[15, Sec. 19.6]. Note in this respect that the metal film is

transparent for extremely short pulses which leads to vanishing

scattered fields in the configuration.

III. TRANSFORM-DOMAIN SOLUTION

The Cagniard-DeHoop method combines the unilateral

Laplace transformation with the wave slowness field repre-

sentation. To show the notation, the expressions are given for

E2 field component. The Laplace transformation is defined as

Ê2(x1, x3, s) =

∫ ∞

t=0

exp(−st)E2(x1, x3, t)dt (6)

for the real and positive parameter s that is used in the

slowness representation applied parallel to the metal sheet

Ê2(x1, x3, s) = (s/2πi)

∫ i∞

p=−i∞

exp(−spx1)

× Ẽ2(p, x3, s)dp (7)

The transform-domain solution then follows from the electro-

magnetic field equations solved together with the boundary

conditions (3)–(4) under transformations (6)–(7).

A. TE polarization

The transform-domain solution for TE polarization reads

{H̃1, H̃3, Ẽ2} = {∓γ0/µ0, p/µ0, 1}ÃE exp[−sγ0|x3 − h|]

+ {−γ0/µ0, p/µ0, 1}ÃER̃E exp[−sγ0(x3 + h)] in D0 (8)

{H̃1, H̃3, Ẽ2} = {γ1/µ0, p/µ0, 1}ÃET̃E

× exp(−sγ0h) exp(sγ1x3) in D1 (9)

where ∓ applies to x3 > h and 0 ≤ x3 < h, respectively, and

R̃E = (G̃E0 − G̃E1 − 2ĜL)/(G̃E0 + G̃E1 + 2ĜL) (10)

T̃E = 2G̃E0/(G̃E0 + G̃E1 + 2ĜL) (11)

ÃE = −(µ0/2γ0)̂i(s) (12)

with G̃E0,1 = 2γ0,1/µ0.

B. TM polarization

The transform-domain solution for TM polarization reads

{Ẽ1, Ẽ3, H̃2} = {±γ0/ǫ0,−p/ǫ0, 1}ÃH exp[−sγ0|x3 − h|]

+ {γ0/ǫ0,−p/ǫ0, 1}ÃHR̃H exp[−sγ0(x3 + h)] in D0 (13)

{Ẽ1, Ẽ3, H̃2} = {−γ1/ǫ1,−p/ǫ1, 1}ÃH T̃H

× exp(−sγ0h) exp(sγ1x3) in D1 (14)

where ± applies to x3 > h and 0 ≤ x3 < h, respectively, and

R̃H = (G̃H1 − G̃H0 + 2ĜL)/(G̃H1 + G̃H0 + 2ĜL) (15)

T̃H = 2G̃H1/(G̃H1 + G̃H0 + 2ĜL) (16)

ÃH = −(ǫ0/2γ0)k̂(s) (17)

with G̃H0,1 = 2ǫ0,1/γ0,1. In Eqs. (10), (11) and (15), (16),

ĜL(s) = β/(s+νC) with β = dǫ0ω
2
P . Finally, the propagation

coefficients in D0,1 are

γ0,1 = (1/c20,1 − p2)1/2 (18)

with Re(γ0,1) > 0 for all p ∈ C. Obviously, the first terms in

Eqs. (8) and (13) represent the incident wave and the second

ones, the reflected waves in D0. Eqs. (9) and (14) then give

the transform-domain expressions for the fields transmitted to

the dielectric half-space D1.

IV. SPACE-TIME SOLUTION

The solution is found using the Cagniard-DeHoop technique

[13]. For the sake of conciseness, final results are provided.

A. TE polarization

The space-time expressions for the TE-polarized fields read

the following form

{H1, H3, E2} = −∂ti(t)∗

{

−
(x3 − h)t

D2
I

,
x1t

D2
I

, µ0

}

× (1/2π)(t2 − T 2
I )

−1/2H(t− TI)

− ∂ti(t)∗Re
[

{−γ0[p(t)], p(t), µ0}R̃E0[p(t)]
]

× (1/2π)(t2 − T 2
R)

−1/2H(t− TR)

+ ∂ti(t)∗
1

2π

∫ ∞

τ=TR

Re
[

{−γ0[p(τ)], p(τ), µ0}
]

× Ω̃E [p(τ), t− τ ](τ2 − T 2
R)

−1/2dτ in D0\(x3 = h) (19)
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where

Ω̃E(p, t) = (1 + R̃E0)α̃E exp[−(α̃E + νC)t]H(t) (20)

R̃E0 = lim
s→∞

R̃E = (G̃E0 − G̃E1)/(G̃E0 + G̃E1) (21)

α̃E = β/(γ0/µ0 + γ1/µ0) (22)

and

{H1, H3, E2} = −∂ti(t)∗(1/2π)

× Im
[{

γ1[p(t)], p(t), µ0

}

Π̃E(p)
]

H(t− TT )

+ ∂ti(t)∗
1

2π

∫ ∞

τ=TT

Im
[{

γ1[p(τ)], p(τ), µ0

}

× Γ̃E [p(τ), t − τ ]
]

dτ in D1 (23)

where

Γ̃E(p, t) = Π̃Eα̃E exp[−(α̃E + νC)t]H(t) (24)

Π̃E = T̃E0(p)(∂p/∂τ)/γ0(p) (25)

T̃E0 = lim
s→∞

T̃E = 2G̃E0/(G̃E0 + G̃E1) (26)

B. TM polarization

The space-time expressions for the TM-polarized fields read

the following form

{E1, E3, H2} = −∂tk(t)∗

{

(x3 − h)t

D2
I

,−
x1t

D2
I

, ǫ0

}

× (1/2π)(t2 − T 2
I )

−1/2H(t− TI)

− ∂tk(t)∗Re
[

{γ0[p(t)],−p(t), ǫ0}R̃H0[p(t)]
]

× (1/2π)(t2 − T 2
R)

−1/2H(t− TR)

− ∂tk(t)∗
1

2π

∫ ∞

τ=TR

Re
[

{γ0[p(τ)],−p(τ), ǫ0}
]

× Ω̃H [p(τ), t− τ ](τ2 − T 2
R)

−1/2dτ in D0\(x3 = h) (27)

where

Ω̃H(p, t) = (1− R̃H0)α̃H exp[−(α̃H + νC)t]H(t) (28)

R̃H0 = lim
s→∞

R̃H = (G̃H1 − G̃H0)/(G̃H1 + G̃H0) (29)

α̃H = β/(ǫ0/γ0 + ǫ1/γ1) (30)

and

{E1, E3, H2} = ∂tk(t)∗(1/2π)

× Im
[{ǫ0

ǫ1
γ1[p(t)],

ǫ0
ǫ1
p(t),−ǫ0

}

Π̃H(p)
]

H(t− TT )

− ∂tk(t)∗
1

2π

∫ ∞

τ=TT

Im
[{ ǫ0

ǫ1
γ1[p(τ)],

ǫ0
ǫ1
p(τ),−ǫ0

}

× Γ̃H [p(τ), t− τ ]
]

dτ in D1 (31)

where

Γ̃H(p, t) = Π̃H α̃H exp[−(α̃H + νC)t]H(t) (32)

Π̃H = T̃H0(p)(∂p/∂τ)/γ0(p) (33)

T̃H0 = lim
s→∞

T̃H = 2G̃H1/(G̃H1 + G̃H0) (34)

V. DISCUSSION OF RESULTS

As far as the transform-domain solution is concerned, the

expressions do not show any singularities except for the

algebraic branch points at p = ±1/c0,1 (see Eqs. (8), (9) and

(13), (14)). The absence of poles implies that no true surface

waves, as the Rayleigh wave [16, Sec. 5.11], for example,

are excited. However, as the space-time solution shows (see

Eqs. (19), (23) and (27), (31)), resulting pulse shapes are

dominantly determined by the exponential factors in Eqs. (20),

(24) and (28), (32). In them, the real part of factors α̃E,H and

the collision frequency νC cause an exponential decay and

the imaginary part of α̃E,H then causes potential oscillations.

Upon noting that

α̃E(p) ∝ [c0γ0(p) + (ǫ1/ǫ0)
1/2c1γ1(p)]

−1 (35)

α̃H(p) ∝ [1/c0γ0(p) + (ǫ1/ǫ0)
1/2/c1γ1(p)]

−1 (36)

we can predict some properties of found space-time expres-

sions. To this end, Eqs. (35) and (36) are evaluated along the

path in the first quadrant of the p-plane that corresponds to

the reflected waves (see Fig. 2).
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Fig. 2. Trajectories along the Cagniard-DeHoop path evaluated within T ≤
ct/h ≤ 30. The markers along the trajectories are ct/h = {8, 16, 24}.

Obviously, Eq. (35) approaches zero shortly after the arrival

time. As a consequence, no significant surface effects can be

expected for the TE-field excitation. On the other hand, the

expression connected with the TM fields in Eq. (36) follows a

straight line, a slope of which depends on the source/observer

offsets x1 and Z = x3 + h. Its imaginary part predominates

over the corresponding real part as the ratio |x1|/Z increases.

Obviously, the ratio is high for large horizontal source/observer

offsets and/or if both source and observer are close to the sheet.

In this region, a strongly oscillatory effect can be expected

provided it is not damped by losses represented by the collision

frequency νC .

VI. NUMERICAL RESULTS

The space-time expressions given in Sec. IV are evaluated

numerically for the TM-polarized field. In our simulations we

take the gold sheet of thickness d = 50 [nm] and of parameters

~ωP = 8.55 [eV] and ~νC = 0.0184 [eV] taken from [17]. The
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Fig. 3. Time evolution of the electric field strength at ct/h = {1.25, 1.75}.
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Fig. 4. Time evolution of the magnetic field strength at ct/h = {1.25, 1.75}.

dielectric support D1 is described by {ǫ1, µ0} = {2.0ǫ0, µ0},

where {ǫ0, µ0} are the constants of vacuum. The TM-polarized

field is excited by the magnetic-current line source with the

power-exponential source signature

k(t) = km(t/tr)
ν exp[−ν(t/tr − 1)]H(t) (37)

where we take km = 1.0 [V], ν = 2 and the pulse time

width c0 tw/h = 0.5. The corresponding pulse rise time

is c0 tr/h = 0.2707. Snapshots taken at observation times

ct/h = {1.25, 1.75} are shown in Figs. 3 and 4. In both figures

we can, closely behind the wavefront, observe a significant

ridge propagating along the gold surface. This phenomenon

becomes stronger as the source moves closer to the interface

and its width depends mainly on the pulse time width of the

excitation pulse.

VII. CONCLUSIONS

Time-domain EM fields excited by line sources placed

above thin-film metallic structures have been analysed with

the help of the thin-sheet boundary-condition concept and the

Cagniard-DeHoop technique. Relaxation effects of analyzed

metal films have been accounted for via the Drude model.

Closed-form space-time expressions for the pulsed fields have

been found and discussed with regard to possible transient

excitation of surface plasmon phenomena.

Although no true surface waves can be excited along thin

plasmonic metal sheets, it has been shown that for the TM

fields, oscillatory surface wave effects can show up. Is is

concluded that such phenomena can not be excited for TE po-

larization. The latter observation is in agreement with the well-

known frequency-domain plane-wave solution claiming that

surface plasmon polaritons do exist only for TM polarization

[7, Sec. 2.2]. However, the time-domain description reveals

full extent of complex space-time phenomena that can occur

along the surface of a thin metallic sheet. Here in addition

to the electromagnetic properties of a metal, the space-time

source/observer relationship plays a crucial role.
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