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Abstract—Recently, some novel boundary conditions have been
observed to arise at interfaces of certain electromagnetic media
in which plane waves are not restricted by a dispersion equation.
In the present study an attempt is made to define most general
media in which dispersion equations are identically satisfied for
any plane wave. Applying four-dimensional formalism, it is shown
that there are three classes of media satisfying this requirement.

I. INTRODUCTION

Time-harmonic electromagnetic plane waves in linear ho-
mogeneous media are characterized by exponential spatial
dependence as

E(r) = E exp(−jk · r), (1)
H(r) = H exp(−jk · r), (2)

where the wave vector k is restricted by a dispersion equation

D(k) = 0, (3)

depending on the parameters of the medium and the angular
frequency ω. In the general case, the dispersion equation is
of the fourth order. For some special media the fourth-order
equation is reduced to two second order equations,

D(k) = D1(k)D2(k), ⇒ D1(k) = 0, D2(k) = 0. (4)

The uniaxially anisotropic medium may serve as an example,
because any wave can be decomposed in TE and TM partial
waves each of which obeys a dispersion equation of the
second order. In some more special media the two second-
order equations are the same,

D(k) = D1(k)D1(k), ⇒ D1(k) = 0, (5)

in which case the medium is nonbirefringent. An obvious
example of such a medium is the isotropic medium. Finally,
there may exist media for which the dispersion equation is
identically satisfied for any wave vector k. This means that, for
a plane wave in such a medium, k can be arbitrarily chosen.
As a simple example, D(k) = k · A · k = 0 is identically
satisfied for any k when A is an antisymmetric dyadic. We
could say that for a medium with such a property, there is
no dispersion equation. This does not, however, mean that the
medium is nondispersive. On the contrary, such a medium
must be dispersive since, otherwise, for a proper choice of the

k vector the group velocity in the medium would exceed the
velocity of light.

Media with no dispersion equation have recently emerged
when studying boundary conditions at interfaces of certain
media. For example, defining a medium by conditions of the
form

D = (α+ αI) ·B + c×E (6)

H = g ×B + (αT − αI) ·E (7)

where α is a dyadic, c and g are two vectors and α is a scalar,
the following equation is obtained for the plane wave field
E through elimination of the other fields from the Maxwell
equations,

q(k)×E = 0, (8)

with
q(k) = (g · k − ωtrα)k + ωk · α+ ω2c. (9)

In more general media, choice of k would lead to vanishing
of E. However, in (8) k may be freely chosen, after which
the polarization of E becomes parallel to the vector q(k) and
the rest of the field vectors are obtained from the Maxwell
equations. In [1] it was shown that a uniaxial version of such
a medium yields DB boundary conditions at its interface, while
for another choice of parameters a generalization of soft-and-
hard and DB conditions can be obtained at the interface [2].

It is the purpose of this paper to study which media have the
property of being free from a dispersion equation. It appears
convenient to do the analysis applying the four-dimensional
formalism of reference [3].

II. DISPERSION EQUATION

The Maxwell equations outside sources can be expressed in
a compact form as

d ∧Φ = 0, (10)
d ∧Ψ = 0, (11)

where the 4D electromagnetic two-forms Φ,Ψ ∈ F2 are
defined in terms of 3D (spatial) one-forms E,H and two-
forms B,D as

Φ = B +E ∧ ε4, (12)
Ψ = D −H ∧ ε4. (13)
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For details in the notation, see [3]. A plane wave has an
exponential dependence on the space-time vector x,

Φ(x) = Φ exp(ν|x), (14)
Ψ(x) = Ψ exp(ν|x), (15)

where ν ∈ F1 is the wave one-form whose spatial part
corresponds to the k vector above. For a plane wave the
Maxwell equations (10), (11) become

ν ∧Φ = 0, (16)
ν ∧Ψ = 0. (17)

Hence, we can express the field two-forms in terms of potential
one-forms φ,ψ as

Φ = ν ∧ φ, Ψ = ν ∧ψ. (18)

A linear medium can be represented as a linear mapping
between the electromagnetic one-forms in terms of a medium
bidyadic M ∈ F2E2 as

Ψ = M|Φ, (19)

or in terms of a modified medium bidyadic Mm ∈ E2E2 as

eNbΨ = Mm|Φ. (20)

The two bidyadics have the relation Mm = eNbM.
From (17) the condition for the potential one-form φ

becomes
ν ∧Ψ = (ν ∧Mbν)|φ = 0, (21)

where the dyadic in brackets belongs to the space F3E1. It
defines the dispersion dyadic D(ν) ∈ E1E1 as

D(ν) = eNb(ν∧Mbν) = −νc(eNbM)bν = Mmbbνν. (22)

Because of (21) and (22), the dispersion dyadic satisfies

D(ν)|φ = 0, (23)

D(ν)|ν = 0. (24)

For Φ = ν ∧ φ 6= 0 the one-forms φ and ν are linearly
independent, whence the rank of the dispersion dyadic must
be less than three. Thus, the dispersion dyadic must satisfy

D(3)(ν) =
1

6
D(ν)∧∧D(ν)

∧
∧D(ν)

= (eNeNbbνν)D(ν) = 0. (25)

Actually, (25) is equivalent to a scalar dispersion equation
(known also as Fresnel equation). It can be given the following
explicit form [4],

D(ν) =
1

6
εNεN ||(Mm

∧
∧(ννcc(Mm

∧
∧(ννccMm)))) = 0,

(26)
which is of the fourth order in ν.

III. MEDIA WITH NO DISPERSION EQUATION

A medium does not have a dispersion equation if the
dispersion dyadic D(ν) satisfies (25) for all possible one-forms
ν, i.e., if it is at most of rank 2.

To study various possibilities, we first assume D(2)(ν) 6= 0

for all ν, whence the rank of D(ν) is exactly 2. Such a dyadic
can be expanded in two dyadic terms as

D(ν) = Mmbbνν = ac+ bd, (27)

where a, b, c,d are four vector functions of ν satisfying a ∧
b 6= 0 and c ∧ d 6= 0. Since D(ν) is quadratic in ν, there are
a few possibilities. If all four vectors are linear functions of ν
and because they satisfy a|ν = 0 etc., they can be expressed
as

a = Abν, b = Bbν, c = Cbν, d =Dbν, (28)

in terms of four bivectors A,B,C,D. This yields the first
possible class of media with no dispersion equation:

Mm = AC +BD + αeNbI(2)T , (29)

or
M = ΠC +∆D + αI(2)T , (30)

where Π,∆ are some two-forms. The last term in either
expression does not affect the dispersion equation for any α.

As a second possibility we may assume that the vectors a
and b in (27) are quadratic functions of ν while c and d are
constant. It turns out that in this case the dispersion dyadic
must be of the form

D(ν) = eNb(α ∧ β ∧ PT ), (31)

where the one-forms α,β depend on ν while P ∈ E1F1 may
be any dyadic independent of ν and satisfying P(2) 6= 0. From
the conditions D(ν)|ν = 0 and ν|D(ν) = 0 the dependence
of one-forms α and β on ν can be figured out. There are
actually two cases, either

M =MP(2)T + αI(2)T , (32)

or
M = (B∧∧I)

T , (33)

defined by dyadics P,B ∈ E1F1. For α = 0, the solution
(32) corresponds to a set of media studied peviously under the
name P-media [5], while the latter solution (33) corresponds to
the class of skewon-axion media [6] (or IB-media [7]), whose
medium conditions can be expressed in 3D form as (6), (7).

Because the other possibilities of (27) seem to lead either
one of the above cases or nowhere, it is concluded that, when
the dispersion dyadic is of rank 2 for all possible one-forms
ν, expressions of the form (30), (32) and (33) define three
possible classes of media with no dispersion equation.

It remains to study the possibility when the dispersion
dyadic is of rank 1, i.e., it satisfies D(2)(ν) = 0, in which
case it can be represented by a single dyadic term as

D(ν) = Mmbbνν = ac. (34)
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Assuming a and c linear functions of ν we arrive at a special
case of (30) with ∆D = 0. Assuming that a is a quadratic
function of ν leads to special cases of (32) and (33) which
reduce to the bare axion medium, M = αI(2)T .

IV. CONCLUSION

As a conclusion, we have studied the possibilities of
defining classes of media for which the dispersion equation
D(ν) = 0 normally restricting the choice of the wave one-
form ν of a plane wave, is satisfied identically for any ν.
Since the rank of the dispersion dyadic D(ν) must be less than
three, we have considered the cases when it it either two or
one for all ν. The outcome was that there are three classes of
possible media, defined by the form of their medium bidyadics,
in four-dimensional formalism of [3], as (30), (32) and (33).
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