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Abstract—A novel approach based on the electromagnetic
(EM) reciprocity theorem is described for developing the Green’s
dyadics pertaining to canonical impedance cylinders and spheres.
These Green’s dyadics are chosen here to directly emphasize
waves guided in the angular direction. The latter constitute
canonical solutions useful in the construction of ray fields, within
the UTD framework, that are excited by antennas on arbitrary
convex surfaces with an impedance boundary condition (IBC). It
is noted that the IBC can be utilized to model highly metallic,
smooth, convex surfaces with a sufficiently thin material coating.

I. INTRODUCTION
The construction of EM dyadic Green’s functions, for wave

problems conforming to coordinate systems in which the
solution becomes separable, is commonly achieved via the
use of vector wave functions (VWFs) expressed in those
coordinates [1]. Such solutions are quite cumbersome when
expressed explicitly in terms of VWFs; furthermore, they
do not easily lend themselves to arrive at representations of
waves guided along circumferential or angular directions. The
latter type of angular guided wave representations emphasize
the creeping wave nature of the fields that are required
in obtaining asymptotic high frequency uniform geometrical
theory of diffraction (UTD) ray solutions, which impart a
direct and vivid picture for the radiation by EM sources in the
presence of such structures. The transformation of the standard
VWF solutions, which generally emphasize waves guided in
a direction away from the radiating object, into a form which
emphasizes angularly guided waves has then to be achieved
by a long, tedious function-theoretic process referred to as the
Watson transform. On the other hand, the present approach
utilizes potential theory and reciprocity to systematically arrive
at the Green’s dyadics. A major advantage of the present
approach is that it provides Green’s dyadics directly in terms
of any choice of guided wave directions; i.e., in terms of any
one of the three orthogonal coordinate directions in which

the solution is separable. The angular (circumferential for
cylinders or polar for spheres) is just one choice that is useful
in emphasizing the creeping wave behavior and is selected
here to be specific. The details of the approach are summarized
below.

II. TECHNICAL APPROACH

As indicated above, the canonical problems of EM source
excited circular cylinder and sphere geometries with an IBC
are considered. Green’s dyadics are constructed for these
problems via the use of potential theory and EM reciprocity
theorem. Basically, the potential theory is first utilized to
obtain field solutions to special source directions (that become
directly obvious for any given geometry). These special po-
tentials can be obtained in terms of scalar Green’s functions.
The scalar Green’s functions can be constructed in terms of
convolution integrals as in [2,3], based on the well developed
theory of linear operators in Hilbert space.
The process for the construction of Green’s dyadic proceeds

via the following steps:

Step 1
For the sake of being specific, consider a tiny electric current

moment of strength dpe(r
�) placed at r�, as in Fig. 1, which

radiates in the presence of an IBC cylinder or sphere. The
observer is located at r. The source and observer points are P �

and P , respectively. Let the EM fields generated by dpe(r
�)

be denoted by (Ee, He). The objective is to find (Ee, He)
which can be expressed as

Ee(r) = dpe(r
�) ·Gee(r|r

�) ; He(r) = dpe(r
�) ·Gme(r|r

�).

Once the (Ee, He) are known and expressed in the above
format, the Green’s dyadics Gee and Gme can be identified
directly and simply by inspection.
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Fig. 1. The cylinder and sphere geometries with an IBC. The source dp
e
is

at r�. The observer is at r.

Step 2
Introduce two test sources at P (i.e., at r), namely a tiny

electric test current moment dpet(r) and a tiny magnetic test
current moment dpmt(r), respectively, which radiate in the
presence of cylinder/sphere. These test sources are chosen to
be pointing in a special direction, û, where û = ẑ (axial
direction) for a cylinder, and û = r̂ (radial direction) for a
sphere. Basically, û is in a direction such that it is the generator
for cylinders and is orthogonal to the circular cylinder cross
section; the same can be true for a wedge geometry. Likewise,
û is orthogonal to the spherical surface. In the case of planar
stratified media, û will have to be chosen to be orthogonal
to the planar stratification. Thus, dpet(r) = ûdpet(r), and it
generates the test potentials Aet(r

�) and F et(r
�) at r� which

are û directed. Likewise, dpmt(r) = ûdpmt(r) generates the
test potentials Amt(r

�) and Fmt(r
�) at r� that are û directed.

The advantage of the special direction û selected for the test
sources will become clear in the subsequent steps. It is noted
that for the dpet(r) electric test source,

Aet(r
�) = µ0dpet(r)Gaet(r

�|r) ;

F et(r
�) = �0dpet(r)Gfet(r

�|r).

Likewise for the dpmt(r) magnetic test source

Amt(r
�) = µ0dpmt(r)Gamt(r

�|r) ;

Fmt(r
�) = �0dpmt(r)Gfmt(r

�|r).

The scalar Green’s functions Gaet, Gfet, Gamt and Gfmt can
be found via the techniques in [2,3]. Unlike the procedure
in [1], the scalar Green’s functions above can be directly
obtained to emphasize waves guided along any of the different
coordinate directions at the very outset [2,3]. These test po-
tentials generate the test fields. In particular, dpet(r) generates
the electric field Eet(r

�) = Eaet(r
�) + Efet(r

�), where Eaet

comes from Aet, and Efet comes from comes from F et.
Likewise dpmt(r) generates the electric field Emt(r

�) =
Eamt(r

�)+Efmt(r
�), whereEamt comes fromAmt and Efmt

comes from Fmt.
Step 3
The original fields (Ee, He) which are of interest can be

related to the test fields of step 2 via the reciprocity theorem,
namely

dpet(r)
�

û · Ee(r)
�

= dpe(r
�) · Eet(r

�)

and
dpmt(r)

�

û · He(r)
�

= −dpe(r
�) · Emt(r

�).

Since the right hand side of the last two equations are
known (via scalar Green’s function mentioned above), the û
components of the desired fields (Ee, He) on the left side
become known also. If one lets (Ee, He) to be generated by
the potentials Ae = Aeû and F e = Feû, respectively, then it
can be shown always that this special choice û yields

�

û · Ee

û · He

�

=
1

jω

�

∂2

∂u2
+ k2

� �

Ae/�0
Fe/µ0

�

∝

�

Ae

Fe

�

where the left side of the above is known. Hence the right
side becomes known. Once Ae = Aeû and F e = Feû become
known, (Ee, He) can be found as usual via differentiating Ae

and F e.
Step 4
Finally, from the relations in step 1, the Green’s dyadicsGee

and Gme can be found via inspection as indicated in that step.
The source point correction (required for completeness) can
be immediately and trivially added, as a dyadic delta function
term, as discussed in [4]. If one has a magnetic current element
dpm(r�) at P � instead of the electric current, the procedure to
obtain the Green’s dyadic for this case follows the same way
as for the electric case.

III. CONCLUSIONS
A procedure based on reciprocity and potentials is presented

for constructing the Green’s dyadics pertaining to canonical
geometries for which the relevant solutions become separable.
This novel approach does not need the use of the more in-
volved VWFs [1]; furthermore, unlike the approach involving
the use of VWFs, the present method provides alternative
representations for the Green’s dyadics that emphasize guided
wave propagation in any desired coordinate direction without
the need for any Watson transformation.
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