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Abstract—Electromagnetic imaging of buried targets is an 

important task that arises in several applicative fields, such as 
civil engineering and archeology. In the present paper, an 
algorithm based on a regularizing approach in #$ Banach spaces 
is applied to the integral equations of the inverse scattering 
problem. The effectiveness of the approach is verified by means 
of preliminary numerical simulations in which buried target are 
illuminated by a set of incident waves in a noisy environment. 

I. INTRODUCTION 
Electromagnetic prospection of buried targets has acquired 

a great importance in several applicative fields, such civil 
engineering and archeology [1–5]. In recent years, several 
techniques have been devised, ranging from radar-based 
approaches to inverse-scattering-based tomographic imaging 
methods [6–15]. However, the development of efficient 
imaging algorithms, able to mitigate the drawbacks of existing 
approaches, is still a challenging task.  

In electromagnetic prospection approaches, the 
electromagnetic field scattered by the target (when illuminated 
by a known source) is collected in a set of measurement points 
located above the air-ground interface and, when possible, in a 
borehole arrangement [15]. Assuming that the targets have 
cylindrical symmetries and that the illuminating field is 
transverse magnetic (TM), the relationship between such field 
samples and the dielectric properties of the investigated region 
can be modeled by using integral equations involving the 
Green’s function for half-space configurations. One of the 
main problems is related to the ill-posedness of these 
equations, which requires the use of regularized inversion 
algorithms. Moreover, the overall relationship turns out to be 
nonlinear. 

In the present work, an algorithm based on iterative 
linearization of the model and regularization in Banach spaces 
is considered. Such method is an extension to half-space 
configurations of the algorithm in [16], which has been 
proposed for free-space imaging of dielectric targets. In 
particular, after the local linearization is done, the obtained 
linear equation is solved through minimization of a cost 
function measured by %"-norms,  & ' ( ' )*. With respect 
to all the well know reconstruction algorithms, usually based 
on the classical Euclidean %+ -norm, the present method in 

%",Banach spaces is able to give a substantial reduction of the 
over-smoothing and ringing effects in the restored solution. 
Basically, due to the geometrical properties of the %" Banach 
spaces, the method could allow to obtain a better localization 
and shaping of targets buried in the soil.  

The mathematical formulation of the approach, both for the 
inverse scattering problem and the Banach space 
reconstruction algorithm, is detailed in Section II. Numerical 
evidences are provided in Section III, whereas some 
conclusions are briefly drawn in Section IV. 

II. MATHEMATICAL FORMULATION 

A. Electromagnetic inverse problem 
Let us consider an infinite dielectric cylinder buried in a 

lossy soil. The target is illuminated by a TM electromagnetic 
field and the scattered electric field is collected by a set of 
antennas. A -./0 time dependence is assumed and omitted in 
the following. The 1-component of the scattered electric field 
in the measurement points, -23400, is related to the dielectric 
properties of the investigation area by means of the following 
Lippmann-Schwinger equation [1] 

-23400567 8 9:;
+ < =56>7-0?056>7@A256B 6>7C6>
DEFG
8 HI404

JK 5=-0?07567 
(1) 

where :; 8 LMN;OP is the wavenumber in the soil (being N; 
the complex dielectric permittivity and OP  the vacuum 
magnetic permeability), QRST  is the investigation area, -0?0  is 
the 1-component of the total electric field inside QRST , and 
@A256B 6>7 is the half-space Green’s function [11]. In (1), = is 
the contrast function, defined as 

=567 8 N567
N;

9 & (2) 

being N the complex dielectric permittivity in the investigation 
area. The electric field inside the investigation area can be 
written in terms of the contrast function by means of a second 
equation, i.e.,  
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-RS3567 8 -0?0567 ) :;
+ < =56>7-0?056>7@A256B 6>7C6>
DEFG

8 -0?0567 9 H2040U
JK 5=-0?07 

(3) 

Equations (1) and (3) are combined together for obtaining a 
non-linear operator equation that can be formally written as 

-23400567 8 HI404
JK =5V 9 H2040U

JK =7WX-RS3567 8 Y5=7567 (4) 

where YZ [ \ ], being [ and ] two fixed Banach spaces, is a 
nonlinear operator mapping the contrast function =  into the 
scattered field -23400. 
B. Banach space inversion procedure 

The nonlinear inverse scattering problem can be formulated 
as follows: Given the scattered field -23400 ^ ] , find the 
contrast function = ^ [  by solving the nonlinear functional 
equation 

Y5=7 8 -23400  (5) 

After a suitable discretization of the functional equation, 
based on piecewise constant basis functions, we search for (an 
approximation of) the contrast function =  by means of the 
following iterative scheme based on an inexact-Newton 
method in Banach spaces [16].  

 
Starting from an initial guess =P ^ _`  (e.g., a simple 

“empty” domain =P 8 a  can be used if no a-priori 
information is available), for : 8 aB&BbB c , the iteration 
=deX 8 =d ) fd ^ _`  is computed, being fd ^ _`  an 
%" 9regularized solution of the linear equation 

gdfd 8 hd, (6) 

where hd 8 -23400 9 g5=d7 ^ _i . Here gdZ _` \ _i  denotes 
the Fréchet derivative of the operator gZ _` \ _i at point =d, 
that is, its best local linear approximation in a neighborhood 
of =d . The iterations will stop until a predefined stopping 
criteria is fulfilled, such as, for instance, the discrepancy 
principle [17]. 

 
In the discrete version of the model, the Banach spaces [ 

and ]  become the well known %"5_`7  or %"5_i7  Banach 
spaces. Here j  denotes the number of elements of the 
discretization of the contrast function =, that is, the number of 
pixels of the investigation domain, and k  denotes the total 
number of measurements of the scattered field, related to all 
the different illuminations and different locations of both 
emitting and receiving antennas. 

The peculiarity of the method is the special computation of 
any linear equation (6), that is, the application of an %",Banach 
space regularization algorithm, with a fixed value & ' ( '
)* . In particular, we consider an iterative method which 
minimizes the square of the %"-norm of the residual, that is, 
which minimizes the following  residual cost functional 
l"Z _` \ m defined as 

l"5f7 8 X
+ ngdf 9 hdn"+ , (7) 

where the square of the %"-norm is non"+ 8 pq roRr"i
RsX t+u". 

We notice that, for  ( 8 b, the residual cost function is the 
classical least square functional in the %+,Hilbert space. In this 
case, the basic iterative minimization scheme is the steepest 
descent method with fixed step length, namely the  Landweber 
method, defined as follows: for % 8 aB&BbB c B %v4w (or until a 
suitable stopping rule is satisfied) 

,,,,,,,,,fdBxeX 8 fdBx 9 ygdzpgdfdBx 9 hd,t (8) 

with the initial guess fdBP 8 a . Here a ' y ' bungdn+  is a 
fixed relaxation parameter, which always guarantees the 
convergence of the iterations fdBxeX , as %  goes to infinity, 
towards the minimum of l+, which is the solution fd of the 
linear equation (6). The classical Landweber method [18] for 
%+  is thus generalized to the minimization of the %", cost 
functional (7) as follows 

fdBxeX 8 {`"
z |{`"pfdBxt 9 ygdz{i"pgdfdBx 9 hd,t} (9) 

for % 8 aB&BbB c B %v4w , with again the initial guess fdBP 8 a. 
The function {`"Z _` \ _`B {i"Z _i \ _i  and {`"

zZ,_` \ _`  are 
the discrete versions of the so-called duality maps [19] and are  
in general defined as follows 

{~� 5o7 8 non�+W� Ä
r5o7Xr�WXÅÇÉÑ5o7X
r5o7+r�WXÅÇÉÑ5o7+

Ö
r5o7~r�WXÅÇÉÑ5o7~

ÜB (10) 

with ÅÇÉÑ5o7 8 áà.âäã5T7 Çå,o ç a
a Çå,o 8 a,, and (z the Holder 

conjugate of the value (, that is, X" )
X
"z 8 &. 

As a general comment, with respect to classical least square 
regularization (that is, regularization in the %+  norm of any 
Hilbert space), the proposed regularization methods with %" 
norm in Banach space allows usually to obtain a better 
localization of targets and less artifacts and ringing effects in 
the images of the retrieved objects [16].  

III. PRELIMINARY NUMERICAL RESULTS 
The considered approach have been preliminary tested by 

using simulated data. Similarly to [13], a “mixed” 
measurement configuration is used. The antennas are located 
both on the air-ground interface and in two boreholes located 
next to the investigated area. In particular, their positions are 
the following 

65S7

8 é
59bèPuêB 9ëèPuê ) b5í 9 &7èPub&7B í 8 &Bc B&ì
59bèPuê ) b5í 9 &ì7èPub&Ba7B í 8 &îBc Bbï
5bèPuêB 9b5í 9 bñ7èPub&7B,,,,,,,,,,,,,,,,í 8 bñBc Bëê

! (1)
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where óP is the wavelength in air. A subset of the available 
antennas illuminates the investigated area. When an antenna 
works as a transmitter, the remaining ò 8 ëb  collect the 
scattered electromagnetic field. For the case reported in the 
present paper, ô 8 ö antennas, located at positions denoted by 
the indexes í 8 ö5õ 9 &7 ) & , õ 8 &Bc B ô , are used as 
transmitter. The total number of measurements of the 
scattered field is k 8 ö ú ëb. 

The working frequency is 300 MHz. A dry sandy soil, 
modeled as a homogeneous material with dielectric 
permittivity N; 8 ëNP  and electric conductivity ù; 8
aûa&,ôuü, is assumed. The investigation domain is a square 
area of side èP  and center 5aB 9èPub7 , which has been 
discretized into j 8 êa ú êa subdomains. The input scattered 
field data has been simulated by using a numerical code based 
on the method of moments. In order to avoid an inverse crime, 
a different discretization has been used. Moreover, the 
computed values have also been corrupted by an additive 
Gaussian noise with zero mean value and variance 
corresponding to a signal-to-noise ratio of 25 dB. 

The target is composed by a circular dielectric object of 
radius † 8 aû&ìèP , dielectric permittivity N?;. 8 îNP , and 
whose center is located at 6?;. 8 59aû&ìóPB 9aûìóP7 . The 
inversion algorithm has been executed with the following 
parameters: Maximum number of inner, i.e., Landweber in 
Banach spaces, iterations of (9), %v4w 8 ì; maximum number 
of outer, i.e., Gauss Newton, iterations of (6), :v4w 8 &aa. 
Moreover, the inversion is started from a void investigation 
area (with dielectric properties equal to those of the soil). 

The quality of the reconstruction has been evaluated by 
means of the following mean relative errors 

-
°
RST
;¢
?;.

8 &
j

° ;¢
?;.

£rNS430§4x 9 NS�U3r
rNS430§4xrS

 (2)

where NS430§4x  and NS�U3  are the values of the actual and 
reconstructed complex permittivity in the n-th subdomain of 
the investigation region, and the subscript inv, bg, and obj 
indicate that the relative quantities are evaluated by 
considering the subdomains belonging to the whole 
investigation area, the object, and the background, 
respectively. 

The behaviors of such error measures versus the norm 
parameter are reported in Fig. 1. As can be seen, low values of 
(  provide better reconstructions of the whole investigation 
area with respect to the case of standard Hilbert-space 
methods (corresponding to ( 8 b).  

This fact is also confirmed by Fig. 2, which reports the 
reconstructed distributions of the relative dielectric 
permittivity in the investigation area for ( 8 &ûë (i.e., the case 
corresponding to the lowest error on the object) and ( 8 bûa 
(i.e., the standard Hilbert approach). Finally, for completeness, 
the reconstructed dielectric profiles along a vertical line 
passing through the center of the cylinder are reported in Fig. 
3 for ( equal to 1.4, 2.0 and 2.3. 

 

 
Fig. 1.  Mean relative reconstruction error versus the norm parameter (. 

 

 
(a) 

 
(b) 

Fig. 2.  Reconstructed distributions of the relative dielectric permittivity with 
(a) ( 8 &ûë  (Banach-based regularization) and (b) ( 8 bûa  (Hilbert-based 
regularization). 
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Fig. 3.  Vertical cut (• 8 9aû&ì,ü) of the reconstructed distributions of the 
relative dielectric permittivity with (a) ( 8 &ûë , (b) ( 8 bûa, and (c) ( 8 bûê. 

 

IV. CONCLUSION 
A Banach-space-based approach for the electromagnetic 

imaging of buried objects has been considered in the present 
paper. The proposed method is based on the full non-linear 
formulation of the electromagnetic scattering problem for half 
spaces and makes use of an inexact-Newton linearization 
scheme. In such a scheme, any linearized system is solved by 
means of a regularization algorithm in Banach spaces, which 
minimizes the %"-norms of the residual function. Solution of 
inverse problems in Banach spaces is an emerging 
mathematical framework that seems to exhibits good 
properties for the reconstruction of isolated objects (e.g., 
isolated materials in soil), thus resulting in a better 
localization and shaping. The reported numerical results, 
although still preliminary, show that the method is able to 
obtain quite good results, even in presence of lossy soil and 
complex objects in a noisy environment. 
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