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Abstract—This paper is about scattering of E-waves (also
referred to as TM-waves) from an infinitely long, perfectly
conducting cylinder with piecewise smooth boundary. The prob-
lem is formulated as an integral equation and is solved by
Nyström’s method in combination with a method referred to
as Recursively Compressed Inverse Preconditioning (RCIP) that
efficiently handles the corners. In the numerical example an
incident plane E-wave is scattered from a cylinder with one
corner. We present results for kd up to 1000, where d is the
diameter of the cylinder and k is the wavenumber. Even for
such a large cylinder we get at least 13 digits of accuracy for the
electric field everywhere outside the cylinder.

I. INTRODUCTION

Scattering from two-dimensional structures, like infinitely
long cylinders, are of interest in, e.g. wave propagation in
waveguides, photonics band-gap structures, substrate inte-
grated waveguides, but also for elongated objects, like wings.
In this paper we present an efficient method that can handle
scattering from cylinders with an arbitrary number of corners.
Close to corners the surface quantities that are used to repre-
sent the solution often have complicated asymptotics, which
can be solved by introducing a finer mesh close to the corners.
If this is not done with great care the number of unknowns
grows rapidly with the number of corners and the accuracy
deteriorates. In this paper we apply a method referred to as
Recursively Compressed Inverse Preconditioning (RCIP). It
was originally developed for static problems but in a recent
paper [1] it was shown that it also can handle Helmholtz
equation equally well. The method is described in more detail
in [1] and in the tutorial [2]. In this paper we restrict ourselves
to the E-wave case whereas both the E-wave and H-wave, also
called TE-waves, cases are treated in [1] and [2].

We give examples where the scattered electric field from a
cylinder with one corner and with a diameter of up to 160
wavelengths is obtained with 14 digits of accuracy almost
everywhere outside the cylinder. This success is achieved by

1) choosing a suitable integral representation of the scat-
tered field in terms of an unknown layer density

2) formulating the scattering problem as a Fredholm second
kind integral equation with operators that are compact
away from the corners

3) discretizing using a Nyström scheme and a mix of
composite Gauss–Legendre quadrature and high-order
analytic product rules

4) modifying the discretized integral equation so that the
new unknown, a transformed layer density, is piecewise
smooth

5) solving the resulting well-conditioned linear system it-
eratively for the transformed layer density

6) partially reconstructing the original layer density from
the transformed layer density

7) evaluating the scattered field from a discretization of
its integral representation which, again, relies on a mix
of composite Gauss–Legendre quadrature and high-order
analytic product rules

While some steps in this scheme are standard, step 4, 6,
and 7 are unique to the recently developed RCIP method.
Conceptually, step 4 and 5 correspond to applying a fast direct
solver [3] locally to regions with troublesome geometry and
then applying a global iterative method. This gives us many
of the advantages of fast direct methods, for example the
ability to deal with certain classes of operators whose spectra
make them unsuitable for iterative methods. In addition, this
approach is typically much faster than using only a fast direct
solver.

II. FORMULATION OF THE PROBLEM

We consider in-plane E-waves scattered by an infinitely
long bounded perfectly conducting cylinder with a piecewise
smooth boundary Γ. The region outside the object is denoted
Ωex, the time dependence is e

−iωt and r = (x, y).

A. Helmholtz equation and integral equation

We let the electric field be parallel to the cylinder, E(r) =
ẑU(r), and let U(r) = Uinc(r) + Usca(r). The scattered field
Usca(r) satisfies the following exterior Dirichlet problem:

∇2
Usca(r) + k

2
Usca(r) = 0, r ∈ Ωex (1)

Usca(r) = −Uinc(r), r ∈ Γ (2)

lim
|r|→∞

(
∂

∂r
− ik

)
Usca(r) = 0. (3)
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For , r ∈ Ωex we write the solution as the combined integral
representation [4, eq. (3.25)].

Usca(r) =
∫

Γ

∂Φk(r, r′)
∂νr′

ρ(r′)d�
′ − i

k

2

∫

Γ

Φk(r, r′)ρ(r′)d�
′

(4)

where Φk(r, r′) =
i
4
H

(1)
0 (k|r − r′|) is the free space Green

function for the Helmholz equation in two dimensions, H
(1)
0 is

the Hankel function of the first kind of order zero, and d� is an
element of arc length. The index k indicates that the quantity
or function depends on the wavenumber k = ω/c. Insertion
of (4) into (2) gives the integral equation for the layer density
ρ(r)

(I + Kk − i
k

2
Sk)ρ(r) = −2Uinc(r), r ∈ Γ, (5)

where

Kkρ(r) = 2
∫

Γ

∂Φk(r, r′)
∂νr′

ρ(r′)d�
′ (6)

Skρ(r) = 2
∫

Γ

Φk(r, r′)ρ(r′)d�
′
. (7)

The second term on the right hand side in (4) corresponds to

the term i
k

2
Sk in (5) and is added in order to ensure a unique

solution for all k. The equation (5) is often referred to as an
indirect combined field integral equation (ICFIE).

III. NUMERICAL SCHEME

The numerical solver used in this paper takes its starting
point in a Fredholm second kind integral equation with in-
tegral operators that are compact away from boundary sin-
gularities and whose unknown quantity is a layer density
representing the solution to the original problem. The in-
tegral equation is discretized using a Nyström scheme and
composite Gauss–Legendre quadrature. At the heart of the
solver lies a method called Recursively Compressed Inverse
Preconditioning (RCIP). It modifies the kernels of the integral
operators so that the layer density becomes piecewise smooth
and simple to resolve by polynomials. Loosely speaking one
can say that RCIP makes it possible to solve elliptic boundary
value problems in piecewise smooth domains as cheaply and
accurately as they can be solved in smooth domains. The
RCIP method originated in 2008 [5]. In a series of papers
it has been extended and successfully applied to electrostatic
and elastostatic problems which, at first glance, might seem
outright impossible. For example, the effective conductivity
of a high-contrast conducting checkerboard with a million
randomly placed squares in the unit cell was computed on
a regular workstation with a relative accuracy of 10−9 [6].
A new record has been established for the three-dimensional
problem of determining the capacitance of the unit cube –
13 digits compared to the seven digits that were previously
known [7].
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Fig. 1. This is a convergence test. The upper figure shows the electric field
from a line source at r = (0.3, 0.1) inside Γ. It is obtained by solving the
boundary value problem with boundary values on Γ, given by the line source.
The lower figure shows the error compared to the exact solution.

A. Convergence and error estimates

Our solver shows a stable behavior. This means that the
solution converges rapidly with coarse mesh refinement up
until a point beyond which no further improvement occurs.
Actually, beyond this optimal point there will be a slow
decay in the quality of the solution, due to accumulated
roundoff error. The precise location of the optimal point is
hard to determine a priori. It depends on the geometry, on the
boundary conditions, and on the wave number. The optimal
point is determined experimentally in the numerical examples
of Section IV.

We have estimated the accuracy in our solutions U(r) rather
thoroughly. The lower plot of Figure 1 shows the error plots for
an exterior problem. It is achieved by generating the boundary
conditions on Γ via a line source at r = (0.3, 0.1) inside Γ
so that the exact solution is known. The upper field plot in
Figure 1 shows the field generated from the line source by
solving the boundary value problem. The lower plot shows
that we have more than 14 digits accuracy in our solution. In
the plane-wave scattering examples of Section IV-A, below, no
exact results are known. Therefore we proceed as follows: we
first compute a solution U(r) using a number of coarse panels
on Γ deemed sufficient for resolution. Then we increase this
number with 50 % and solve again. The difference between
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the resolved value of U(r) and the overresolved value of U(r)
is used as an indirect pointwise error estimate. Yet an indirect
method to estimate the (overall) precision in the computations
is by comparing the scattering cross section computed from
its definition with its value obtained via the optical theorem
(at infinity). See, further, [1]. As it turns out, the various error
estimates agree to 15 digits.

IV. NUMERICAL EXAMPLES

We shall now solve (5) for the unknown density ρ(r),
using using a Nyström scheme with a composite Gauss–
Legendre quadrature, and the RCIP solver, and then evaluate
the scattered field of (4). We restrict the numerical examples
to scattering from an infinite straight cylinder with boundary
Γ described by

r(t) = sin(πt)
(
cos

(
(t − 0.5)

π

2

)
, sin

(
(t − 0.5)

π

2

))
, (8)

where t ∈ [0, 1], and to the incident plane wave Uinc(r) =
e

iky . The object parameterized in (8) has a corner with opening
angle θ = π/2 at r = 0 and a diameter d = 1, in arbitrary
length units, so that kd = k. The examples cover sizes from
kd = 1 up to kd = 1000. We have seen that at kd = 1000
the frequency is high enough such that the uniform theory
of diffraction theory can be applied. All numerical examples
are executed in MATLAB on a workstation equipped with an
IntelXeon E5430 CPU at 2.66 GHz and 32 GB of memory.

A. Near field

A criterion for a powerful method is that it should be able to
calculate the electric field everywhere in Ωex. Figure 2 shows
the total electric field for the E-wave in the vicinity of the
scattering object and the corresponding errors. The scattering
object itself appears in green color in the upper image and
in white color in the image below. The number of spatial
points in each image is 106. It is encouraging to see that the
accuracy is high even close to the boundary and, in particular,
close to the corner. The integrals in (4) are often thought
of as difficult to evaluate close to the boundary due to the
singularities in the Hankel functions when r′ = r. However,
the present method circumvents these problems using a high-
order analytic quadrature.

In Figures 2 a), e) the real part of the total electric field
U(r) for the E-wave case is plotted for kd = 10 and 1000.
To capture the diffraction pattern in the vicinity of the corner,
the field is plotted in a rectangular region with side length
proportional to 1/k and center at the tip of the corner. At
kd = 10 the error is very small, as seen from Figure 2 b). The
errors increase slightly with kd but even at kd = 1000 we get
14 digits or better almost everywhere, as depicted in Figure 2
f).

V. CONCLUSION

We show that scattering of a plane wave from an infinitely
long cylinder with piecewise smooth boundary and with an
finite, but arbitrary, number of corners can be efficiently treated
by a numerical method that utilizes the Nyström method
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Fig. 2. a), e) show � {U(r)} for a plane E-wave Uinc(r) = eiky incident
on the perfectly conducting cylinder with boundary Γ given by (8). b), f)
show absolute errors.
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and RCIP. When we here apply the RCIP method to the
Helmholtz equation and the exterior Dirichlet problem we
do this in a two-dimensional setting. We consider scattering
of time-harmonic E-waves from an infinitely long perfectly
conducting cylinder. Scattering problems are harder to solve
than electrostatic problems, all other things held equal. Planar
problems provide a good testing ground prior to a move up
to three dimensions [8]. As we have seen, the transition from
Laplace’s equation to the Helmholtz equation is surprisingly
straightforward and the results, presented in Section IV, are
as good as the ones obtained for electrostatics.

ACKNOWLEDGMENT

This work was supported in part by the Swedish Research
Council under contract 621-2011-5516.

REFERENCES

[1] J. Helsing and A. Karlsson, “An accurate boundary value problem solver
applied to scattering from cylinders with corners,” Nov., arXiv:1211.2467
(2012).

[2] J. Helsing, “Solving integral equations on piecewise smooth boundaries
using the RCIP method: a tutorial,” Jul., arXiv:1207.6737 (2012).

[3] W. Y. Kong, J. Bremer, and V. Rokhlin, “An adaptive
fast direct solver for boundary integral equations in two
dimensions,” Applied and Computational Harmonic Analysis,
vol. 31, no. 3, pp. 346 – 369, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1063520311000224

[4] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering

Theory. Berlin: Springer-Verlag, 1992.
[5] J. Helsing and R. Ojala, “Corner singularities for elliptic problems:

Integral equations, graded meshes, quadrature, and compressed
inverse preconditioning,” Journal of Computational Physics, vol.
227, no. 20, pp. 8820 – 8840, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0021999108003471

[6] J. Helsing, “The effective conductivity of arrays of squares: Large
random unit cells and extreme contrast ratios,” Journal of Computational

Physics, vol. 230, no. 20, pp. 7533 – 7547, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0021999111003433

[7] J. Helsing and K.-M. Perfekt, “On the polarizability and
capacitance of the cube,” Applied and Computational Harmonic

Analysis, no. 0, (in press 2012). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1063520312001236
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