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Abstract—We derive analytical shape integral formulas for the
shape derivatives of the system matrix arising from the Rao-
Wilton-Glisson (RWG) discretized electric field integral equation.

Using these formulas and the adjoint variable method (AVM),
we inspect sensitivity of input reflection coefficient of a certain
UWB dipole antenna with respect to infinitesimal variations of
the computational mesh.

The sensitivity obtained with the analytical formula is com-
pared against one calculated with the finite difference approxi-
mation.

I. INTRODUCTION

Antenna shape optimization by gradient methods has be-
come increasingly feasible even with adequately powerful
desktop computers during the last decade. The forward prob-
lem of solving the input admittance of a moderately simple
antenna consisting of perfect electric conducting (PEC) ma-
terial is easily solvable with electric field integral equation
(EFIE) within few seconds to minutes.

The shape sensitivity of the input admittance has been
computed traditionally with adjoint variable methods [1], [2]
employing finite difference formulas [1], [3]. It is unclear
if the finite difference (FD) formulas give the right results
and, furthermore, the FD approach is rather cumbersome and
computationally expensive. Also automatic differentiation has
been used in the past [4]. Both aforementioned methods give
good results, but they don’t tell anything about local behavior
of the shape differentials in an analytical sense.

Analytical shape derivatives for planar meshes have been
previously studied in [5]. In the present work, however, the
geometry and shape variations are not restricted to planar ones.
Furthermore, the change of variables is employed together
with the Piola transformation [6] in contrast to the flux-
transport theorem used in [5].

The core results of this work are simple analytical formulas
for the shape derivatives of the system matrix arising from the
EFIE discretized with RWG basis functions. In addition, we
discuss how the shape derivatives can be computed together
with the original system matrix and we point out that the
increase in computation time is small.

II. PRELIMINARIES

The boundary current J of a PEC object D with boundary
Γ = ∂D satisfies [7]–[11]:
Find J s.t.

i

ωε

∫
Γ

divu(r)S(divJ)(r)dr− iωµ
∫

Γ

u(r) · S(J)(r)dr

=

∫
S

u(r) ·Ep(r)dr ∀u. (1)

Here S is the single layer operator defined by

S(J)(r) =

∫
Γ

Gk(r− r′)J(r′)dr′, (2)

where Gk is given by (time harmonic sign convention e−iωt)

Gk(r) =
eik|r|

4π|r|
. (3)

Let us suppose that the boundary Γ is admits triangulation
T = (Tp)

N
p=1 where all the triangles are flat. The Equation (1)

is discretized with modified RWG basis functions given by

unp (r) =
1

2Ap

(
r− pn+2

)
, (4)

where Ap is the area of the triangle Tp and pn+2 is the
opposing vertex to the edge having local index n. It should be
noted that the scaling by edge length is omitted here, which
makes these basis functions exactly the lowest order Raviart-
Thomas basis functions [6].

When computing the elements of the system matrix arising
from formulation (1) one arrives to the following double
integrals

I1 =

∫
Tq

v(r) ·
∫
Tp

Gk(r− r′)u(r′)dr′dr (5)

I2 =

∫
Tq

divTqv(r)

∫
Tp

Gk(r− r′)divTpu(r′)dr′dr, (6)

where u and v are RWG basis functions on Tp and Tq ,
respectively, and divT denotes the surface divergence on the
surface patch T .
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Let us denote the linear system arising from the method of
moments discretization by

Ax = b. (7)

In this work, the system matrix A and x depend upon a small
real parameter s and this dependence is denoted by As and
xs. However, when s = 0, it is omitted.

A. The Piola Transformation

Let Fp be the affine map which maps the reference triangle

T̂ = {(ξ, η) : 0 < ξ + η < 1 and ξ, η > 0} (8)

to the triangle Tp. We note that the determinant of its Jacobian
F ′p is given by

detF ′p = |F ′peξ × F ′peη|. (9)

Here the unit vectors of the coordinate directions ξ and η are
denoted by eξ and eη , respectively.

The Piola transformation [6] PFp
associated with Fp is

defined by

PFp
û ◦ Fp =

1

detF ′p
F ′pû. (10)

It maps the RWG basis functions on T̂ to RWG basis functions
on Tp. Furthermore, it has the following property [6]

divTp PFp û =
1

detF ′p

(
divT̂ û

)
◦ F−1

p , (11)

where the surface divergences on T̂ and Tp are denoted by
divT̂ and divTp

, respectively.

B. Adjoint Variable Method

Let use briefly review the adjoint variable method (AVM)
in order to fix notations and to motivate the computation of
the derivatives of As. For a more comprehensive treatment on
the matter we refer to [1], [2], [12]. Early signs of AVM can
also be found in [13].

Suppose xs is a solution to some single port antenna
computation problem with an excitation given by vector b. The
input admittance is given by Y (xs) = xTs b and its derivative
with respect to s satisfies

d

ds
Y (xs) =

(
∂

∂x
Y

)T
dxs
ds

(12)

The state equation is dictated by the MoM system

Asxs = b. (13)

Differentiating (13) on both sides with respect to s we obtain

A
dxs
ds

= −dAs

ds
x (14)

Introducing the adjoint problem

AT γ =
∂

∂x
Y (x) = b, (15)

we arrive to
dY

ds
= −γT dAs

ds
x. (16)

However, since the EFIE system matrix is symmetric, we
obtain the usual [4] result

dY

ds
= −xT dAs

ds
x. (17)

III. THE DERIVATIVE FORMULAS

In this section we shall derive the analytical derivative
formulas. We start by inspecting small variations of triangles.

Let us denote the mapping that moves one vertex of the
triangulation T by an amount of s to the direction τ by Φs.
It holds that

Φs(r) = r + sτλm(r), (18)

where λm is the first order nodal shape function associated
with the vertex m.

The Jacobian Φ′s is given by

Φ′s = I + sτ∇λm, (19)

where I is the identity dyad and ∇λm is interpreted as a row
vector.

By denoting T sp = Φs(Tp) and F sp the affine mapping that
takes T̂ to T sp , where Tp ∈ T , it holds that

Φs ◦ Fp = F sp , (20)

thus, the determinant of the Jacobian Φ′s satisfies

det Φ′s =
detF sp

′

detF ′p
. (21)

It should be noted that the determinant defined this way is not
equivalent to the one obtained by extending Φs to an open
neighborhood of Tp except when λm is extended by constant
in the normal direction of Tp.

Now the Formula (10) can be used to define the Piola
transformation associated with Φs without any changes.

It turns out that this maps again the RWG basis functions
of Tp to those of T sp .

Let us denote

Is1 =

∫
T s
q

vT s
q
(r) ·

∫
T s
p

Gk(r− r′)uT s
p
(r′)dr′dr (22)

and

Is2 =

∫
T s
q

divT s
q
vT s

q
(r)·∫

T s
p

Gk(r− r′)divT s
p
uT s

p
(r′)dr′dr. (23)

In the following, let us denote u = uTp and v = vTq for
readability. By a change of variables we obtain

Is1 =

∫
Tq

∫
Tp

(
Φ′s(r)

v(r)

det Φ′s(r)

)
·
(

Φ′s(r
′)

u(r′)

det Φ′s(r
′)

)
Gk (Φs(r)− Φs(r

′)) det Φ′s det Φ′sdr
′dr

=

∫
Tq

∫
Tp

(Φ′s(r)v(r)) · (Φ′s(r′)u(r′))

Gk (Φs(r)− Φs(r
′)) dr′dr (24)
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and

Is2 =

∫
Tq

∫
Tp

divTq
v(r)

det Φ′s(r)

divTp
u(r′)

det Φ′s(r
′)
Gk (Φs(r)− Φs(r

′))

det Φ′s(r) det Φ′s(r
′)dr′dr

=

∫
Tq

∫
Tp

divTq
v(r)divTp

u(r′)

Gk (Φs(r)− Φs(r
′)) dr′dr. (25)

The derivatives of these expressions with respect to s are
given by

∂

∂s
Is1 =∫

Tq

∫
Tp

v(r) ·
(
(τ∇λm(r))T + τ∇λm(r′)

)
· u(r′)Gk(r− r′)+

v(r) · u(r′)τ · (∇Gk)(r− r′) (λm(r)− λm(r′)) dr′dr

(26)

and
∂

∂s
Is2 =

∫
Tq

∫
Tp

divTpv(r)divTqu(r′)

τ · (∇Gk)(r− r′) (λm(r)− λm(r′)) dr′dr.
(27)

For details, we refer to [14].
It is worth noting, that the integrals in (26) and (27) can be

computed with, e.g., singularity subtraction methods [15] or
singularity cancellation type methods [16], [17]. In this work
we employed the former methods.

The integrands in Formulas (26) and (27) contain ∇Gk,
which is of order R−2, R = |r − r′|. However, it holds that
|λm(r) − λm(r′)| < CR, where C is finite and depends on
the orientation of the triangles, thus for small R

|τ · (∇Gk)(r− r′) (λm(r)− λm(r′)) | ≤ CR−1. (28)

The integrals (26) and (27) are not more singular than the
original non-differentiated ones, but instead their polynomial
order increases. Consequently, when computing the contribu-
tion arising from a well separated triangle pair to the derivative
of the MoM system matrix, one has to pay close attention that
the order of the numerical quadrature is sufficient.

IV. ADJOINT SENSITIVITY OF DIPOLE PATCH ANTENNA

We study the sensitivity of the reflection coefficient ρ to
50 Ω transmission line of a bow-tie type antenna optimized
in [12] by computing its derivative with respect to boundary
variation shown in Figure 1. The sensitivity obtained by our
analytical formula is then compared to one calculated with the
first order forward finite difference formula.

The boundary variation field was constructed as follows.
Let us denote the patch by Γ ⊂ R3 which has a boundary
∂Γ. The vertex next to ∂Γ ∩ {(0, y) ∈ R2 : y > 0} in
clockwise direction is denoted by pa and the vertex next to

∂Γ ∩ {(0, y) ∈ R2 : y < 0} in counterclockwise direction
by pb. We assign to a part of the boundary in the right half
plane a edge length parametrization t ∈ [0, L] by assigning
t = 0 to pa and t = L to pb. Here L is the length of the
path obtained by traversing the boundary from pa to pb in
clockwise direction.

At each boundary vertex pm of T in the right half plane,
we assign a vector

τm = τ sin

(
kπtm
2L

)
, (29)

where tm is edge length coordinate of pm, k = 1 and τ = ex.
The field is then mirrored to the vertices in the left half plane.
This way we could easily construct more boundary variation
fields by taking k = 1, 2, . . . ,M .

The matrix assembly code was constructed in such a way
that, for each triangle the pair (Tp, Tq), it computes the original
integrals (5) and (6) and their derivatives with respect to
movement of each vertex to each direction ex, ey and ez .
The final derivative of the system matrix is then obtained
by combining these partial derivatives. Thus, computing more
derivatives of the system matrix does not significantly increase
computation time. For instance, calculating partial derivatives
of the system matrix with respect to 4, 8 or 16 parameters
takes 5.0 s, 5.0 s or 5.5 s, respectively, whereas the assembly
of the system matrix without derivatives lasts around 1 s.

The sensitivity of the reflection coefficient ρ with respect to
the boundary variation field is shown in Figure 2. At 3 GHz a
1 mm variation would vary ρ by 0.05. The relative difference
of the sensitivities given by the finite difference approximation
and analytical formula is shown in Figure 3. We used step
length of h = 10−8 in the FD formula.

The reflection coefficient shown in Figure 4 is similar to
the one computed in [12], where ρ was below 10 dB over the
frequency range.

The antenna mesh in the present work was obtained by
making a mesh over the image of the antenna in the electronic
version of [12] with the DistMesh [18] mesh generator. That,
together with the coarseness of the mesh explain the difference
in the calculated reflection coefficient.

V. CONCLUSION

We discussed the analytical shape derivatives for the EFIE
system matrix discretized with slightly unusual RWG func-
tions. It turned out that such basis functions yield a very simple
formula for the derivative of the system matrix. Furthermore,
we demonstrated the applicability of the analytical formula by
computing shape sensitivity of a previously optimized UWB
dipole antenna and comparing it to the sensitivity obtained
with the finite difference formula.

The studied UWB antenna is quite insensitive to variations
in shape, yet the sensitivity is non-zero. The reason for this
is that originally the antenna was optimized using a min-max
procedure.

The main contribution of this work is the derivation of the
analytical derivatives of the EFIE system matrix in such a form
that existing quadratures can be easily used to compute them.
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Figure 1. The boundary vector field to compute derivatives with respect to.
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Figure 2. Sensitivity of reflection coefficient in mm with respect to boundary
deformation field.
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Figure 3. Relative difference of sensitivities obtained with difference formula
and analytical one.
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Figure 4. Reflection coefficient ρ
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