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Abstract—The paper presents a study of time domain
inverse scattering for a metallic cylinder based on the
finite difference time domain (FDTD) method and the
evolutionary algorithms (EAs). The FDTD method is
employed to calculate the scattered E fields for the
forward scattering, while the inverse scattering problem is
transformed into an optimization one. The idea is to
perform the image reconstruction by utilization of some
optimization schemes to minimize the discrepancy between
the measured and calculated scattered field data. The
schemes tested include differential evolution (DE),
dynamic differential evolution (DDE), self-adaptive
differential evolution (SADE) and self-adaptive dynamic
differential evolution (SADDE). The suitability and
efficiency of the above methods applied to microwave
imaging of a 2-D metallic cylinder are examined.
Numerical results show that good reconstruction can be
obtained by all optimization methods tested. However,
SADDE outperforms DE, DDE and SADE regarding the
reconstruction accuracy and the convergent speed in terms
of the number of the function calls.
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I. INTRODUCTION

In recent decades, the scientific community has witnessed
addressed a growing interest inthe detection and imaging of
unknown objects located in inaccessible domains by means of
electromagnetic fields in microwave range. As a matter of fact,
the propagation of microwave is significantly affected by the
characteristics of the medium. Therefore, it is profitable to
exploit such a phenomenon in order to sense an unknown
scenario in a non-invasive fashion. Toward this end, several
researches have been pursuing in the framework of
non-destructive evaluation and testing and biomedical
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diagnostics [1]-[4].

However, it is well known that ill-posedness and
non-uniqueness are the major difficulties of inverse scattering
problems [5]. The inverse scattering problems are usually
treated by traditional deterministic methods which are founded
on a functional minimization via some gradient-type scheme.
The major drawback of the traditional deterministic methods
is that the final reconstructed image is highly dependent on the
initial trial guess [6]. In general, they tend to get trapped in
local minima when the initial trial solution is far from the
exact one. Thus, some population-based stochastic methods,
such as GA [7], PSO [8], and DE [9], are proposed to search
the global extreme of the inverse problems to overcome the
major drawback of the deterministic methods. The advantages
of applying the algorithms based on stochastic strategies
include strong search ability, simplicity, robustness, and
insensitivity to ill-posedness. As compared with GA, the
algorithm of DE is much easier to implement and converge
faster. Moreover, it has been shown that DE outperforms
real-coded GA and PSO in terms of convergence speed [10],
[11]. In recent years, some papers have compared different
algorithm in inverse scattering [10]-[13]. However, these
methods exhibit certain drawbacks usually related to the
intensive computational effort they demand in order to achieve
the global optimum and still the possibility of premature
convergence to a local optimum. Hence, it is seemingly
natural to use evolutionary algorithms, not only to find the
solutions of a problem but also to tune these algorithms for the
particular problem. Technically speaking, this requires extra
efforts to modify the values of certain control parameters
during the course of searching process. The proof of
convergence of EAs with self-adaptation is difficult because
the control parameters are changed randomly and the selection
does not affect their evolution directly [14]. Usually, the best
settings of the control parameter for DE and DDE are problem
dependent. However, it is interesting to investigate how
self-adaptivity can be applied to DE and DDE. It should be
noted that a good test of parameter tuning usually requires
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multiple runs of the algorithm, which could be time
consuming and not feasible for certain problems. The
proposed self-adaptive concept is able to overcome the
disadvantage such that there is no need for multiple runs in
order to adjust and/or find good control parameters.

Application of self-adaptive differential evolution (SADE)
to real-valued antenna and microwave design problems was
investigated [15]. To the best of our knowledge, there are still
no research work on self-adaptivity in different differential
evolutionary algorithms (DEAs) applied to inverse scattering
problems.

In this paper, the computational method combining the
FDTD method and DE algorithm is studied first. The forward
problem is solved by the FDTD method, for which the
subgridding technique [16] is implemented to closely describe
the fine structure of the cylinder. The cubic spline [17] is more
efficient in terms of the unknown number required to describe
a cylinder of arbitrary cross section. In addition, by using the
cubic spline, the coordinates of local origin inside the cylinder
can serve as the searching parameters and move around the
searching space, which is very hard to achieve, if not
impossible when the trigonometric series expansion is used in
the inversion procedure. In sections II and III, the forward
scattering and inverse problems are presented, respectively. In
sections IV and V, evolutionary algorithms and the numerical

results of the proposed inverse schemes are given, respectively.

Finally, in VI section some conclusions are drawn.

II. Theoretical Formulation

Let us consider a two-dimensional metallic cylinder in a
free space as shown in Figure 1. The cylinder is parallel to z
axis, while the cross-section of the cylinder is arbitrary. The
object is illuminated by a Gaussian pulse line source located at
the points denoted by Tx, sequentially, while reflected waves
are recorded at those points denoted by Rx. The computational
domain is discretized by Yee cells. It should be mentioned that
the computational domain is surrounded by the optimized
perfect matching layers (PML) absorber to reduce the
reflection from the environment-PML interface.

The direct scattering problem is to calculate the scattered
electric fields while the shape and location of the scatterer is

given. The shape function £ (6) of the scatterer is described

by the trigonometric series in the direct scattering problem
N/2 N/2

F(6)=>_B, cos(nf)+ Y _C, sin(nd)

n=0

(1

n=1

I11. INVERSE PROBLEM
For the inverse scattering problem, the shape and location
of the perfectly conducting cylinder are reconstructed by the
given scattered electric field measured at the receivers. This
problem is resolved by an optimization approach, for which
the global searching evolutionary algorithms are employed to
minimize the following objective function (OF):
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where E;xp and E anl are experimental electric fields and

the calculated electric fields, respectively. N; and M are the
total number of the transmitters and receivers, respectively. O
is the total time step number of the recorded electric fields.

IV. EVOLUTIONARY ALGORITHMS
(A) Differential Evolution (DE)

DE algorithm starts with an initial population of potential
solutions that is composed by a group of randomly generated
individuals which represent the center position and the
geometrical radiuses of the cylinder. Each individual in DE
algorithm is a D-dimensional vector consisting of D
optimization parameters. The initial population may be

expressed by {x,- i=1, 2,~-~,Np} , where Np is the

population size. After initialization, DE algorithm performs
the genetic evolution until the termination criterion is met. DE
algorithm, like other EAs, also relies on the genetic operations
(mutation, crossover and selection) to evolve generation by

generation. The mutant vector le.‘” is generated according

to equation (3) for typical DE [18].

(ViD= XD+ 2 -[(X,,)i = (X))

j,m,ne[(),Np _1] m#*n 3)

where i=1~D and ¥ is the scaling factor associated with the

vector difference (XX —X¥). A modified DE namely

dynamic differential evolution, DDE, is proposed to speedup
the convergence of the DE. The key distinction between a
DDE and a typical DE is on the population updating
mechanism. In a typical DE, all the update actions of the
population are performed at the end of the generation of which
the implementation is referred to as static updating mechanism.
Alternatively, the updating mechanism of DDE is carried out
in a dynamic way: each parent individual would be replaced
by its offspring if the offspring has obtained a better objective
function value than its parent. Thus, DDE can respond the
progress of population status immediately and is expected to
yield faster convergence speed than the typical DE.

SADE and SADDE are based on DE and DDE schemes,
respectively. Each vector is extended to carry its own values

of control parametersx, F and cr Moreover, the control
parameters are self-adjusted in every generation for each
individual according to the following scheme:

) &)

E

PG+l T

{F, +rand, *F,, if rand, <0.1

F,;, otherwise
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A, +rand,* A, if rand, <0.1

Aisgil = 5
P Ao, otherwise ®)
CR rand,, if rand, <0.1
o CR.,., otherwise ©

where randl, rand2, rand3, rand4, rand5 and rand6 are
uniform random numbers with its value uniformly between 0

FF, 4

and 1. and /1“ are the lower and the upper

limits of F and 7", respectively. Both £ and /11 are set

to 0.1, while both ﬂ'” are set to 0.9 [14]. Based on

the self-adaptive concept, the F, A and CR parameters
adjust automatically while the time consumption does not
increase. More details about the SADE and SADDE algorithm
can be found in [3], [14].

“ and

V. NUMERICAL RESULT
As shown in Figure 1, the problem space is divided in

68x 68 grids with the grid size Ax = Ay =5.95 mm. The

metallic cylinder is located in free space. The cylindrical
object is illuminated by a transmitter at four different positions,
N=4. The scattered E fields for each illumination are collected
at the eight receivers, M=8. Note that the simulated result
using one incident wave is much worse than that by two
incident waves. In order to get more accurate result, four
transmitters are used here. The transmitters and receivers are
collocated at a distance of 24 grids from the origin. The
scatterer is illuminated by cylindrical waves with the electric
field polarized along the axis, while the time dependence of
the field is of a derivative Gaussian pulse. There are eleven
unknown parameters to retrieve, which include the center

position (X _,Y,), the radiuses PO,, i=1,2,---,8, of the

!
shape function and the slope £, . Very wide searching ranges

are used for the DDE to optimize the objective function given
by (2). The parameters and the corresponding searching ranges
-47.6mm < X, <47.6mm

are listed follows: ,
-47.6mm<Y, <47.6mm 5.95mm< p, <71.4mm

| = ves —_2< o <

i=12, ’8, and 25 py < 2. The crossover rate CR is

set to be 0.8. Both parameters F and A are set to be 0.8 in
DE and DDE. The population size Np is set to be 110. In our
simulation, DE, DDE, SADE and SADDE used the same
population size and the same stopping criteria.

For the first example, the metallic cylinder with shape

function F(0)=29.75+11.9c0s(28) mm is considered.

It is shown that the DE scheme is able to achieve good
convergences. Here, the r.m.s. error is defined as

Error= {Alfi[FC“Z(@)—F(@)F/Fz(@}“

i=l

(M
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where the V' is set to 720.
The reconstructed images of the example are shown in Fig.
2 and Fig. 3, respectively. The DF value for DE, DDE, SADE
and SADDE are about 10.8%, 9.6%, 2.1% and 1.3% in the
final generation, respectively. Figure 3 shows that DDE and
SADDE the relative errors of the shape decrease quickly and
good convergences are achieved within 100 generation.

Y axis
A

Searchin§
boundary

Fig. 1 Geometry for the inverse scattering of a metallic

cylinder of arbitrary shape in free space.
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Fig. 2 The exact cross section of the cylinder and final

reconstructed shape.
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Fig. 3 The objective function (OF) versus numbers of function
calls for the example.

VI. Conclusions

We present a study for the time domain inverse scattering of
metallic cylinders. The inverse problem is reformulated into an
optimization one. By combining the FDTD method and the
evolutionary algorithms, good reconstructed results are
obtained. Numerical results show that the SADDE has better
reconstructed results as compared with the others when the
same number of iterations is concerned. More test results about
these evolutionary algorithms will be reported in the
conference presentation.
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