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Abstract—We apply a novel on-line method to detect elliptic
deformations of winding turns in a power transformer. We
employ the first-order perturbation theory to a transformer
winding surrounded by the transformer tank wall and the
magnetic core. The transformer winding is modeled as a structure
consisting of thin conducting cylindrical rings (winding segments
or turns) situated within a coaxial cylindrical waveguide, where
the inner conducting cylinder represents the magnetic core
and the outer conducting cylinder represents the wall of the
transformer tank. We simulate antennas inside the transformer
tank to radiate and measure microwave fields, in order to identify
and quantify elliptic deformations of the individual winding
segments or individual turns. The propagation problem is solved
by conventional waveguide theory, including mode-matching and
cascading techniques. We utilize optimization to solve the inverse
problem and obtain a good agreement between the reconstructed
and true deformations of the winding segments.

I. I

Power transformers are critical components of power grids.

While in operation, transformers are subject to degradation, in-

cluding thermal hot spots, winding deformations by mechani-

cal forces, and moisture in the insulation due to decomposition.

Degradation effects are detected using diagnostic methods.

However, the existing methods are often inaccurate or only

applicable off-line. Off-line methods generally imply a non-

service stress of a transformer [1], [2], [3], [4]. On the other

hand, on-line monitoring methods of winding deformations

due to the mechanical forces from short circuit currents are

generally not available.

In this paper we study an on-line method to detect the

mechanical deformations where one or more winding seg-

ments (or turns) have been slightly deformed from the ideal

circular form to an elliptic form. Our general method [5] can

in principle also be used to detect the effects of other types

of degradation mechanisms (see e.g. [6]), but the investigation

in the present paper focuses on a specific class of mechanical

deformations only.

The idea of our approach is to insert antennas inside the

transformer tank, above and below the transformer windings,

to radiate and measure microwave fields that interact with

the winding structure. The analysis of the measured signals

and their relations to the structure parameters, being critical

signatures of mechanical deformations, is an inverse electro-

magnetic problem [7] that typically is not straightforward to

solve mathematically. We solve the propagation problem by

Fig. 1. The power transformer as a coaxial cylindrical waveguide.

conventional waveguide theory, including mode-matching and

cascading techniques [8]. We use an optimization technique

for solving the inverse problem in order to reconstruct the

actual deformations of the irradiated winding segments.

II. T   

We model a transformer winding structure as a coaxial

cylindrical waveguide where the inner conducting cylinder

represents the magnetic core, and the outer conducting

cylinder represents the wall of the transformer tank, as

shown in Fig. 1. In between there is a set of thin conducting

cylindrical rings (winding segments or turns) that are situated

within a coaxial cylindrical waveguide. The geometry of

our model of a transformer winding surrounded by the

transformer-tank wall and the magnetic core is shown in

Fig. 2. We denote the four regions (1-4) between the two

cylindrical conductive surfaces of the coaxial waveguide

(magnetic core and tank wall) and the conductive obstacle

(winding segment or turn) as indicated in Fig. 2.

For the propagation problem we only consider TM-

modes (Hz = 0) as they include the TEM-mode, which

is the dominant mode in all regions. Following [10], the

longitudinal component of the electric field is given by

Ez =
1

σ + jωε

(

d2
Λ

dz2
+ k2
Λ

)

T (r, ϕ) , (1)

where k2
= jωµ(σ + jωε) and Λ(z) = exp(−jkzz) for

progressive waves traveling in positive z-direction. The
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Fig. 2. Cross section of a coaxial waveguide as a model of a transformer
winding.

material parameters µ, σ and ε are the effective permeability,

conductivity and permittivity, respectively, for the transformer

winding insulation. The scalar transverse function denoted

by T (r, ϕ) in (1) for TM-waves in a coaxial wave guide is a

solution of the transverse wave equation

∇T T (r, ϕ) + γ2T (r, ϕ) = 0 , (2)

where γ is the transverse wave vector. An approximate

solution of the equation (2) for TM-waves, suitable for our

problem, is given by [10]

Tn,m(r, ϕ) = Q sin
nπ(r − RI)

RO − RI

cos(mϕ) , (3)

with

γ2
n,m =

n2π2

(RO − RI)2
+

4m2

(RI + RO)2
, (4)

where n = 1, 2, . . . and m = 0, 1, 2, . . . are two integers that

denote the TM-modes in this case. In (3) and (4) we denote

the radii of the inner and outer cylinders of the coaxial

waveguide by RI and RO respectively.

III. T -  

Let us now assume that the transformer winding segment

(or turn) of radius R (equal to inner radius R1 or outer radius

R2 according to Fig. 2 for regions 1 and 2 respectively) lying

between the magnetic core of radius RC and the transformer

tank of radius RW , is slightly deformed from the expected

circular shape of radius R to an ellipse with semi-major axis a

and semi-minor axis b. The ideal circular shape and the actual

deformed elliptic shape of the transformer winding segment

(or turn) are shown in Fig. 3.

From Fig. 3, to the first order of approximation in the small

parameter ε/R, we obtain the following result for the size of

Fig. 3. Elliptic deformation of the circular winding of radius R.

the radial deformation δ(r, ϕ) of the elliptic winding compared

to the unperturbed circular winding

δ(r, ϕ) = δ(ϕ) = r − R = ε cos 2ϕ . (5)

From (5), we see that a − R = + ε for the semi-major axis

(r = a) when ϕ = 0, π while b − R = − ε for the semi-minor

axis (r = b) when ϕ = π/2, 3π/2 in accordance with Fig. 3.

Thus we have a = R+ε and b = R−ε such that, to the second

order of approximation in the small parameter ε/R, the length

of the perturbed ellipse is given by

O = 2πR

(

1 +
ε2

4R2

)

≈ 2πR , (6)

and we see that up to the first order in the small parameter

ε/R, the turn length of the perturbed winding is approximately

equal to the turn length of the corresponding unperturbed

winding. Following Jackson [9] (Problem 8.12), if the eigen-

value parameters and eigenfunctions of the transverse equation

for two boundary contours C and C0 are (γ2,T ) and (γ2
0,T0),

respectively, then to the first order in δ(r, ϕ) we have for TM-

modes

γ2 − γ2
0 = +

∮

C0
δ(ϕ)|

∂T0

∂n
|2dl0

∫

S 0
|T0(r, ϕ)|2dS 0

, (7)

where ∂T/∂n = n · ∇T is the so-called normal derivative of

T . In our case, the unperturbed transverse mode functions for

TM-modes are given by (3). Performing the integrations in

(7), we obtain

γ2 − γ2
0 =

n2π2

(RO − RI)2

ε

RO − RI

δn,1 , (8)

where δn,1 is a Cronecker delta function and should not

be confused with our deformation parameter δ(r, ϕ) or δ(ϕ).

Thus we see that, to the first order of perturbation, only

the TM-modes with m = 1, i.e. TMm1-modes, give a non-

zero deviation of the eigenvalues γ2 from the unperturbed

eigenvalue parameters γ2
0
. Using now the result (4) with m = 1,

we obtain the perturbed eigenvalue parameters γ2 in the form

γ2
n,m =

n2π2

(RO − RI )2
(1 +

ε

RO − RI

) +
4

(RO + RI)2
. (9)
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Thus, in the regions 1 and 2, as depicted in Fig. 2, the elliptic

perturbation causes an effective decrease of R1 and R2, i.e.

R′1 = R1 −
ε

2
, R′2 = R2 −

ε

2
. (10)

On the other hand, the radii of the magnetic core and the

tank wall are clearly not affected by the elliptic deformation

of the winding segments (or turns). Thus in the regions 3 and

4, as depicted in Fig. 2, there are no effects of the elliptic

perturbation and we can use the unperturbed eigenfunctions

and eigenvalue parameters. We can therefore introduce a new

variable ρ = r − RC and replace the mode numbers (n, 1)

simply by (n). Following [5], we define the orthonormal basis

functions for TMn-modes (TMn,1-modes) in the regions 1

(below the conductive obstacle) and 2 (above the conductive

obstacle) as follows

ψ(1)
n (ρ, ϕ) =

√

2 − δn,0

π(R′
1
− RC)

cos

(

nπρ

(R′
1
− RC)

)

cosϕ , (11)

ψ(2)
n (ρ, ϕ) =

=

√

2 − δn,0

π(RW − R′
2
)

cos

[

nπ

π(RW − R′
2
)
(a − ρ)

]

cosϕ , (12)

while in the regions 3 and 4, with no obstacle present, the

basis functions are equal to each other and given by

ψ(3)
n (ρ, ϕ) = ψ(4)

n (ρ, ϕ) =

=

√

2 − δn,0

π(RW − RC )
cos

(

nπρ

(RW − RC)

)

cosϕ . (13)

Here we can use the definition of the transverse wave number

γn in the lossless case (σ = 0), i.e. γ2
n = ω2µε − k2

zn, where

we denote the longitudinal wave number for the n-th mode

by kzn. Thus, the longitudinal wave numbers k
(i)
zn and the

TMn-mode impedances Z
(i)
n for the four regions (i = 1,2,3,4)

can be written in the form

k(i)
zn

2
= ω2µε − γ(i)

n

2
= k2 − γ(i)

n

2
, (14)

Z(i)
n =

k
(i)
zn

k
η , η =

√

µ

ε
. (15)

The radial electric fields E
(i)
rn and azimuthal magnetic fields H

(i)
ϕn

are now linear combinations of the basis functions ψ
(i)
n (ρ) for

the respective region. These transverse fields can be expanded,

in terms of the basis functions, as follows [8]:

E(i)
r (ρ, ϕ, z) =

∞
∑

n=0

[

c(i)+
n (z) + c(i)−

n (z)
]

Z(i)
n ψ

(i)
n (ρ, ϕ) , (16)

H(i)
ϕ (ρ, ϕ, z) =

∞
∑

n=0

[

c(i)+
n (z) − c(i)−

n (z)
]

ψ(i)
n (ρ, ϕ) . (17)

where for each mode and each region E
(i)
rn = Z

(i)
n H

(i)
ϕn, while

c
(i)±
n (z) are coefficients for modes propagating in ±z-direction.

Here we need to consider the boundary conditions at the

planes z = z1 and z = z2. First, we have the continuity of the

transverse electric field component Er over the entire surface,

where E = 0 inside the conductive material yields that Er

vanishes at the metallic part of the boundary. The second

condition is that Hϕ must be continuous over the aperture

parts of the surface. In equations (16) and (17), the sum is

performed over all modes (0 ≤ n ≤ ∞), but in the numerical

implementation, each summation needs to be reduced from ∞

to a maximum mode number Ni (i = 1, 2, 3, 4). Thus, with a

finite number of modes (0 ≤ ni ≤ Ni), we define the vectors

c±
(i)

(z) by (i = 1, 2, 3, 4)

c±(i)(z) =
[

c
(i)±

1
(z) c

(i)±

2
(z) ... c

(i)±

Ni
(z)

]T
. (18)

Following [5], the scattering analysis gives the following

results














c−(zL)

c+(zR)















=















S11 S12

S21 S22





























c+(zL)

c−(zR)















. (19)

Thus we obtain the complete scattering matrix equation for

propagation over one ”cell”, i.e. from zL to zR. The cascading

of one cell denoted by a, with scattering matrix Sa and situated

in the interval z1 ≤ z ≤ z2, with a neighboring cell denoted

by b, with scattering matrix Sb and situated in the interval

z2 ≤ z ≤ z3, gives the following scattering equation:














c−(z1)

c+(z3)















=















Sc
11 Sc

12

Sc
21 Sc

22





























c+(z1)

c−(z3)















, (20)

where

Sc
11 = Sa

11 + Sa
12(I − Sb

11Sa
22)−1Sb

11Sa
21 (21)

Sc
12 = Sa

12(I − Sb
11Sa

22)−1Sb
12 (22)

Sc
21 = Sb

21(I − Sa
22Sb

11)−1Sa
21 (23)

Sc
22 = Sb

22 + Sb
21(I − Sa

22Sb
11)−1Sa

22Sb
12 (24)

Using the cascading formula (20) with (21-24), it is possible

to cascade together any number of cells by iteration.

IV. R  

The computer simulation geometry of our transformer wind-

ing model is shown in Fig. 4. At this stage of our research,

we are mainly concerned with investigating the diagnostic

principles, such that the dimensions chosen in Fig. 4 are

not intended to mimic any realistic power transformer. It

should be noted that the elliptic deformations correspond to

the radial extensions of winding segments or turns, as shown

in Fig. 4. Such deviations are indeed frequently found when

inspecting old decommissioned power transformers. Some typ-

ical mechanical deformations of winding segments are shown

and studied using frequency response analysis (FRA) in e.g.

[11]. The inverse problem to determine the studied parameters

x = (ρ1, ρ2, ...ρn) is based on minimizing the optimization

function J, defined by

J(x) =
∑

i, j

∣

∣

∣Scalc
i j (x) − Smeas

i j

∣

∣

∣

2
, (25)
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Fig. 4. The computer simulation geometry with a distance between the tank
wall and magnetic core RW − RC = 1 m and five winding segments, each
with width R′

2
− R′

1
= 0.3 m and height z2 − z1 = 0.9 m. The colors indicate

the value of the resulting magnetic field Hϕ when the lowest TM-mode of
frequency f = 200 MHz is incident from the left.

where Scalc
i j (x) are the elements of the calculated scattering ma-

trix and Smeas
i j are the corresponding elements of the measured

scattering matrix. In the present paper, the studied parameters

are the radial positions of the winding segments that reflect

the elliptic deformations according to the formulae (10). The

optimization model is tested by comparing our calculated

scattering data with synthetic measurement data generated

from the commercial program HFSS. The S -parameters are

determined directly from HFSS by using the three lowest

wave modes and defining two ports at the two sides of the

waveguide. Here we present a case of reconstruction of 10

conductors, where two of the conductors are subject to elliptic

deviations. The results are shown in Fig. 5, where we obtained

good reconstruction results for the effective winding positions

that reflect the corresponding elliptic deformations according

to the formulae (10).

V. C

We studied elliptic deformations of winding turns in a

power transformer using the first-order perturbation theory. We

simulated antennas inside the transformer tank to radiate and

measure microwave fields in order to identify and quantify

elliptic deformations of the individual winding segments or

individual turns. Using optimization to solve the inverse prob-

lem, we obtained a good agreement between the reconstructed

and true deformations of the winding segments.
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