
IEICE Proceeding Series 
 
 
 
 
Recycling Lethal Chromosomes Based on Immune Operation in Genetic 
Algorithm for Multi-Knapsack Problem 

 
 
Jing Guo, Jousuke Kuroiwa, Hisakazu Ogura, Izumi Suwa, Haruhiko 
Shirai, Tomohiro Odaka 

 
 
Vol. 1 pp. 219-222 
Publication Date: 2014/03/17 
Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers 

Downloaded from www.proceeding.ieice.org 



Recycling Lethal Chromosomes Based on Immune Operation
in Genetic Algorithm for Multi-Knapsack Problem

Jing Guo†, Jousuke Kuroiwa†, Hisakazu Ogura†, Izumi Suwa†, Haruhiko Shirai‡ and Tomohiro Odaka†

†Graduate School of Engineering, University of Fukui
‡Faculty of Engineering, University of Fukui

3-9-1 Bunkyo, Fukui, 910-8507 Japan
Email: {jguo, jou, ogura, suwa, shirai, odaka}@ci-lab.jp

Abstract—In order to enhance GA’s performance in
solving constrained optimization problems, we proposed
a recycling method of lethal chromosomes (LCs) in GA
with a double island algorithm model based on an immune
operation. The method revives LCs by applying vaccines
abstracted from LCs. We apply our method into a multi-
knapsack problem (MKP), which corresponds to a classic
combinatorial problem. The exhaustive simulation results
indicate that our method acts a superior performance of
finding optimal solutions.

1. Introduction

Genetic Algorithm (GA), pioneered by Professor Hol-
land in the late 1960s, has been widely used in combina-
torial optimization for the global search and robustness. It
reflects the natural selection and survival of the fittest in
evolutionary process. In general, GAs usually contain three
basic steps, which are respectively crossover operator, mu-
tation operator, and selection operator. According to these
operators, it can improve the adaptability of each individ-
ual by learning the law of biological evolution. The frame-
work of GAs as mentioned above is referred as a simple GA
(SGA) in this paper. GAs have global searching capability,
greater robustness and parallelism. Since GAs have these
advantages, they always outperform classical optimization
methods so much that they have been used to solve various
complex problems [1].

In spite of these achievements, GAs are not flawless. Al-
most optimization problems have some constraints. In the
course of evolution, unfortunately, the chromosomes which
do not satisfy the constraints are generated. A large number
of these chromosomes are generated, affecting the search
performance of GA greatly. In practical, these chromo-
somes are eliminated in SGA, and mentioned as LCs here-
after. However, we consider that the LCs would have some
excellent features [2]. For instance, some LCs take quite
higher fitness value even though they do no satisfy the con-
straints.

In this paper, based on a double islands algorithm model,
we propose a recycling method of LCs in GA with a dou-
ble island algorithm model based on an immune operation.
In our method, LCs are recycled by applying vaccines ex-

tracted from all the LCs. Lastly, we apply our method to
two kinds of MKP, small size and large size, in order to
investigate performance by comparing with SGA.

2. Recycling Method of LCs in GA

2.1. MKP

Let us explain MKP briefly. MKP is one of classic con-
strained combinatorial optimization problems, which be-
longs in NP-hard problem[3]. MKP can be applied in a
wide variety of fields, such as project selection, proces-
sor allocation in distributed system, cutting stuck or cap-
ital budgeting. The goal of MKP is to find a subset of
objects that maximizes the total profit while satisfying the
constraint conditions.

In this paper, a state of jth object is presented by x(k)
j ,

where the variable x(k)
j ∈ {0, 1}, “0” means that the jth

object is not put into kth knapsack and “1” means that the
jth object is put into kth knapsack. Therefore, MKP is de-
scribed as follows:

Maximize
M∑

k=1

N∑
j=1

v jx
(k)
j , (1)

where v j represents the value of the jth object, N the num-
ber of the objects, and M the number of knapsacks. The
constraint conditions are as follows:

N∑
j=1

w jx
(k)
j ≤ W (k) for all k, (2)

M∑
k=1

x(k)
j ≤ 1 for all j, (3)

where w j represents the weight of the jth object and the
W (k) the maximum weight of the kth knapsack. The first
constraint condition, Eq.(2), means that for all the knap-
sacks, the total weight of the knapsack must be smaller
than its maximum weight. The second constraint condi-
tion, Eq.(3), means that for all the objects, one object must
be put into a certain knapsack once.

2012 International Symposium on Nonlinear Theory and its Applications
NOLTA2012, Palma, Majorca, Spain, October 22-26, 2012

- 219 -



2.2. GA for MKP

At first, let us explain our coding method of GA for
MKP. In our GA, each chromosome is composed of N
genes, g = (g1, g2, · · · , gN), and each g j ∈ {0, 1, · · · ,M}.
In our coding, g j = m (, 0) means that the jth object is put
into the mth knapsack. On the other hand, g j = 0 means
that the jth object isn’t put into any knapsacks. Thus, the
jth gene g j corresponds to the jth object variable x(k)

j as
follows:

g j = k =⇒ x(k)
j = k. (4)

where k takes {0, 1, · · · ,M}. According to Eqs.(1) and (4),
in this paper, the fitness is evaluated as follows:

Fitness =
M∑

k=1

N∑
j=1

v jx
(k)
j . (5)

At last, we explain our genetic operation. In a crossover
operation, we employ uniform one, where a binary random
string with the length of N is applied. The element of the
string takes either “0” or “1”, where “0” means that at the
corresponding point, the pair of genes do not cross. On the
other hand, “1” means that at the corresponding point, the
value of genes are changed each other. The procedure is
represented in Fig.1. The candidates of the pair of chromo-
some are selected according to the ranking selection. In our
crossover operation, indeed, whether the uniform crossover
operation is applied or not depends on the probability of
Pc. In the latter simulation, we employ 2N pairs.

In mutation operation, the candidates among the 2N
children chromosomes, where the crossover operation has

Figure 1: Uniform crossover operation.

Figure 2: Double island model of GA.

completed, are selected with the probability of Pm. Ap-
plying point and replacing value of the gene are randomly
determined.

Before the selection operation, we discriminate whether
the chromosome is LC or not, where LC is a chromosome
which does not satisfy the constraint conditions. LCs are
revived by our recycling method with the immune opera-
tion. The details are presented later. In our GA, thus, the
chromosomes, where the crossover operation and the mu-
tation operation have completed, are categorized into two
kinds of population pools, (i) a living island which contains
living chromosomes that satisfy all the constraint condi-
tions and (ii) a lethal island which contains LCs, as shown
in Fig.2. This type of GA is referred as double islands
model of GA proposed by [4]. It should be noted that the
revived chromosomes of LCs are moved into the living is-
land.

According to either a ranking selection or a roulette
wheel one, in the selection operation, we select the next
generation of chromosomes with the population of N
among the N parent chromosomes and 2N children chro-
mosomes adding the revived chromosomes of LCs. The
solving ability extremely depends on the selection meth-
ods. The details are presented in Sec. 3.

2.3. Recycling Method of LCs

The immune operation will perform after the crossover
operation and the mutation operation have completed. Let
us assume that genetic operations have completed at tth
generation in GA. In this paper, the immune operation con-
sists of two procedures, (i) vaccine production procedure
and (ii) recycling procedure. First is to generate the vac-
cine. The other is to revive LCs into the living island by
making use of the vaccines.

2.3.1. Vaccine Production Procedure

In the vaccine production procedure, we make vaccines
from all the LCs including parent ones. The procedure are
as follows:

1. After genetic operations have completed at tth gener-
ation in GA, choose all the LCs until T (t) generations
ago. The ath LC denotes as g(a)(t) (a = 1, · · · , L(t)),
where L(t) is the total number of LCs until T (t) gen-
erations ago. In addition, l(t) is the number of LCs at
the tth generation. In other word, l(t) LCs have to be
recycled and revived into the living island.

2. Generate LCs’ pool from all the LCs as follows:

G(t) =


g(1)(t)
...

g(L(t))(t)



- 220 -



=


g(1)

1 (t) · · · g(1)
N (t)

...
. . .

...

g(L(t))
1 (t) · · · g(L(t))

N (t)

 (6)

3. According to the LCs pool, the vaccine is produced as
follows:

υb
j (t) =

L(t)∑
a=1

f (g(a)
j (t); b), (7)

where j = 1, ... , N, b = 1, ... , M and

f (g(a)
j (t); b) =

 1 (g(a)
j (t) = b),

0 (g(a)
j (t) , b).

(8)

In the procedure of the producing vaccine, the vaccine υb
j (t)

represents how many times the jth object is put into the bth
knapsack among the LCs’ pool of G(t).

2.3.2. Recycling Procedure based on Vaccines

In the recycling procedure, we recycle and revive l(t)
LCs at the tth generation. Let us assume that the ath LC,
g(a)(t), is tried to recycle and revived into the living island.
Based in the vaccines, find the index i∗ from overweight kth
knapsack, which satisfies the following condition,

N∑
j=1

w jx
(k)
j > W (k). (9)

The index i∗ is given by,

i∗ = Arg min
jε1,...,N

υk
j(t). (10)

Finally, let the value of the i∗th gene in ath LC of g(a)(t) to
be,

g(a)
i∗ (t) = 0. (11)

The finding procedure of the i∗ index means that we
search an object which was put in the kth knapsack with
the smallest opportunity among LCs’ pool of G(t). If such
the i∗ object is removed from the kth knapsack, the effect
on the fitness given by Eq.(5) would be small. Then, we set
g(a)

i∗ (t) = 0.
The above procedure is continued while the ath LC,

g(a)(t), satisfy the constraint conditions of Eqs.(2) and (3).
In addition. the above procedure is continued while l(t)
LCs are moved into the living island from the LCs’ pool.

3. Computer Experiments

3.1. Purposes and Methods

Hereafter, our GA with the recycling method based on
the immune operation is referred as IGA. In computer ex-
periments, we investigate the practical ability of IGA for
MKP. We perform two scales of computer experiments as
follows:

• small size of MKP

• large size of MKP

In the small size of MKP, the number of objects is 15, and
the number of knapsacks is 3. In the large size of MKP, the
number of objects is 1000, and the number of knapsacks
is 50. In the small size problem, it is possible to solve the
exact solution. In the large size problem, on the other hand,
it is difficult to solve the exact solution.

In our GA, for the small size problem, the population
size of chromosomes is 50, and for the large size problem,
the population size of chromosomes is 50. The other pa-
rameters of GA are as follows: Pc = 0.8 and Pm = 0.05.
In our recycling method, we set the duration T (t) of gen-
erations to be t for simplicity. Thus, at the tth generation,
we calculate LCs’ pool from the 1st generation to the tth
generation.

At first, we investigate dependence on the selection
methods. Thus, we study which one is suitable for IGA in
the large size of MKP, the ranking selection or the roulette
wheel selection. The procedure of GA is stopped at 500th
generations. We evaluate the fitness with respect to the
CPU time.

At last, in order to show the practical ability, we compare
the fitness of IGA with SGA. SGA means that GA without
our recycling method. In this experiment, we employ the
ranking one in the selection operation.

In the above two experiments, we perform GA 10 times
for different initial chromosomes, and evaluate the average
of the fitness for the 10 trial. It should be noted that we
performe all the computer experiments under the same sit-
uation with PC of Corei5 2410M 2.3 GHz.

3.2. Results

3.2.1. Dependence on the selection methods

The result of the best fitness is shown in Fig.3, where
the red line represents the result of IGA with the ranking
selection and the blue line IGA with the roulette wheel se-
lection. From result, that IGA with the ranking selection
achieved a very fast and accurate convergence. So it is a
good suitable selection operator for IGA in solving MKP.

[s]

Figure 3: Dependence on the selection methods.

- 221 -



3.2.2. Small Size of MKP

The result is shown in Fig.4, where the red line repre-
sents the result of IGA and the blue line SGA. From this
figure, the converged optimal solution found by IGA is bet-
ter than that of SGA. In addition, IGA has succeeded in
converging to exact solution, whose fitness takes 47, 996.
Thus, it means that IGA works well in solving MKP.

fi
tn

es
s

Figure 4: Fitness for the small size problem.

(a) generation

fi
tn

es
s

(b) CPU time

[s]

Figure 5: Fitness for the large size problem W.R.T (a) gen-
eration and (b) CPU time.

3.2.3. Large Size of MKP

The result is shown in Fig.5(a), where the red line rep-
resents the result of IGA and the blue line SGA. At the
1,000th generation, the fitness of IGA takes 31788281 and
that of SGA takes 30119416, indicating the imroving abil-
ity with 5.5%. In addition, the dependence of the fitness
on CPU time is given in Fig.5(b), indicating that IGA gives
better solutions after 6.6[s] comparing with CPU time. Ob-
viously, our proposed method is definitely superior to the
SGA, on the aspect of the optimization mechanism. Thus,
IGA is practical in solving MKP.

4. Discussions

From our computer experiments, the ranking selection
is much better than the roulette wheel selection for the se-
lection operation. inferior is implemented via adopting the
ranking selection operator. In our method, we utilize LCs
by reviving them with the immune operation. Thus, the
revived LCs would takes higher fitness, introducing the va-
riety of chromosomes at the next generation. Therefore,
the ranking selection could succeed to choose better chro-
mosomes with keeping the variety. It is future problem to
investigate whether the revived LCs actually takes higher
fitness or not.

Introducing the immune operation, we have succeeded
to improve the performance of GA for MKP. However, the
improving rate is not so large of 22% at 10,000th genera-
tion, evaluating as follows,

improving rate =
improving rate of fitness

increasing rate of cpu time
, (12)

where IGA take 19.5[s] and SGA 15.6[s] at the 1,000th
generation. It suggest us that there is a possibility of im-
proving the performance by changing the immune opera-
tion, for instance, the duration time of T (t) and the candi-
date of revived LCs.

References
[1] K. S. Tang, K. F. Man, S. Kwong, Q. He, “Genetic

Algorithm and their Applications,” IEEE Signal Pro-
cessing Magazine, vol.13, pp.22–37, 1996.

[2] I. Hitoshi, S. Nobuo, “The Influence of Lethal Gene
on the Behavior of Genetic Algorithm,” Society of In-
strument and Control Engineers, vol.31, pp.569–576,
1995.

[3] D. Pisinger, “An Exact Algorithm for Large Multiple
Knapsack Problem,” European Journal of Operational
Research, vol.114, pp.528–541, 1999.

[4] M. C. Xie, T. Yamaguchi, T. Odaka, H. Ogura, “An
Analysis of Evolutionary States in the GA with Lethal
Genes,” IEICE Trans. DII, vol.J79-D-II, pp.870–878,
1996.

- 222 -




