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 Abstract–Recent developments enable the practical 
and beneficial use of chaos communications by control of 
symbolic dynamics. The key advance is the discovery of a 
new class of low-dimensional chaotic oscillators that 
enable simple encoding and coherent reception. These 
remarkable oscillators are provably chaotic, exhibit a 
symbolic dynamics with a generating partition, and admit 
an exact analytic solution as a linear convolution of 
symbols and a fixed basis function. For encoding 
information, the exact solution provides an analytic 
coding function to facilitate control of the system’s 
symbolic dynamics. For reception, the existence of a fixed 
basis function enables a simple matched filter receiver for 
coherently detecting symbols. System performance 
exceeds other proposed chaos communications methods 
and approaches the theoretical limit of binary phase-shift 
keying (BPSK). Consequently the exactly solvable 
oscillators offer real advantages that justify using chaotic 
waveforms for high-bandwidth data communications. 
 
 
1. Introduction 
 
 Over the last two decades, many have advocated the 
development of practical data communications using 
chaotic waveforms as information carriers. The 
motivations for such development and the proposed 
methods have been varied. Ideally, one would chose chaos 
for communications if, in some sense, a chaotic waveform 
is the optimal solution. That is, given practical and 
realistic constraints, the best method to communicate 
information from a source to destination uses a chaotic 
waveform. 
 In this short paper, we consider data communications 
subject to a realistic design constraint—correlation 
receiver performance using a simple, passive, analog 
matched filter. A correlation receiver is optimal for 
receiving discrete data in the presence of additive white 
Gaussian noise (AWGN) [1]. A passive analog filter offers 
low-cost, high-efficiency, durability and reliability. To 
meet the requirements imposed by these constraints, we 
show that an exactly solvable chaotic waveform is the best 
solution. 
 

2. Communications Waveform 
 
 We suppose we have a random, information bit stream 
 

    m
m

s t s t m



   (1) 

where 

  
1, 0 1

0, otherwise

t
t

 
 


 (2) 

is a digital basis function (i.e., square pulse) and each bit 
is represented by 1ms   . We consider this bit stream as 

a message signal and, in a certain sense, seek a best 
method to encode the message for transmission. 
 In many realistic environments, it is beneficial to use a 
correlation receiver to maximize the signal-to-noise ratio 
(SNR) and minimize the bit-error rate (BER). Ideally, we 
would implement a matched filter receiver; however, we 
also assume a strong motivation to avoid using a digital 
signal processor (DSP). That is, we require a simple 
solution due to power, cost, or other factors, such that the 
usual approach of digital sampling and processing are 
precluded. 
 As customary, we encode the message bits using a 
binary coded waveform 

    m
m

u t s t m



    (3) 

where (t) is a fixed analog basis function. We choose this 
basis function so that it has a simple, analog matched filter. 
Assuming the waveform u(t) is an electrical signal, a 
particularly simple matched filter is the RLC circuit shown 
in Figure 1. In this circuit, the input is u(t) and the output 
is x(t). This passive linear filter is modeled as 

   
2

2 2
2

2 0
d x dx

x u
dtdt

        (4) 

where 2T RC  , 2 2 2T LC   , and time is in 

units of the characteristic time T. By design, we assume 
the circuit components are selected such that T = 1, 
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ln 2  , and 2  . Introducing an operator notation, 

we write 

    1x t u t   (5) 

where 1  is a linear operator that denotes the operation 

of the matched filter.   
 We seek the basis function that corresponds to the 
matched filter shown in Figure 1. To this end, we 
recognize the impulse response of a matched filter for a 
real waveform is the time reversal of the waveform [1].  
As such, we have 

    1 t t    (6) 

where (t) is the impulse delta function. Explicitly, this 
equation requires solving the initial value problem 

     
2

2 2
2

2 0
d d

t
dtdt

         
  

 (7) 

    0, 0
d

dt

    


 (8) 

where    t t  


 is the time-reversed basis function. 

Solving this linear system yields 

    
2 2

sin 2 , 0

0, 0

tt tt

t

   

     
 

 (9) 

which is plotted in Figure 2. We note the basis function is 
not causal, since the waveform is nonzero as t   . In 
conventional communications theory, the lack of causality 
is a stumbling block; however, we do not let this 
technicality dissuade us and we proceed anyway. 
 
 
3. Chaos 
 
 For the basis function (t), it is significant that the 
waveform u(t) is chaotic in the sense of Li-Yorke [2]. To 
support this claim, we define a return map from the 
waveform using the derivative evaluated at half-integer 
times and show it is conjugate to the Bernoulli shift map. 
. To begin, we note 

    m
m

du d
t s t m

dt dt




    (10) 

where 

 2 2 cos sin 2 , 0

0, 0

tt t td

dt
t

   


           
 

 (11) 

is the derivative of the basis function. We define the nth 
return as 

  2 2

2
1 2n

du
d n

dt 
  


 (12) 

where n is an integer value. The multiplicative factor is 
arbitrary and included for convenience. Using equation 
(10) with 

   2 21
2 ,

1 2 2
0,

n m n md
n m

dt
n m

        
 

 (13) 

we find the nth return in equation (12) yields 

 
0

2 m
n m n

m

d s






   (14) 

Similarly we find 

 1 1
0

2 m
n m n

m

d s



  


   (15) 

is the next return. Examining equations (14) and (15), we 
immediately see that successive returns satisfy a shift 
relationship on the message symbols.  
 By considering all possible symbol sequences, we 
recognize equations (14) and (15) as binary expansions 
covering the closed interval [–2,2]. Furthermore, we 
recognize 

  sgnn ns d  (16) 

where sgn is the signum function (ignoring the degenerate 
singular point dn = 0). Using equations (14) and (16), we 
can write the next return (15) as 

L

CR

 x t u t

 
 

Figure 1. RLC filter proposed as a matched filter for 
the fixed basis function (t), with input signal u(t) and 
output x(t). 
 

 
Figure 2. Basis function (t) corresponding to the 
simple matched filter circuit. 
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  1 2 sgnn n nd d d       (17) 

which provides an explicit return map for the waveform. 
This return map, which is closed on the interval [–2,2], is 
plotted in Figure 3. This return map is conjugate to a 
Bernoulli shift, which implies that orbits of the return map 
are chaotic. Since orbits of the map correspond to regular 
returns of the encoded waveform, the waveform is also 
chaotic (in the sense of Li-Yorke [2]), with positive 
Lyapunov exponent ln 2  . The waveform u(t) is an 
example of a chaotic waveform constructed by linear 
superposition [3,4]. 
 
 
4. Differential Equation 
 
 It is desirable to find a means to generate the encoded 
waveform (3) with basis function (9). To this end, we note 
the waveform (3) is a particular solution of the differential 
equation 

    
2

2 2
2

2 0m
m

d u du
u s t m

dtdt
   





 
      

  
  (18) 

which can be derived from equation (7) via time reversal 
and linear superposition. However, viewed as a dynamical 
system, this differential equation does not typically 
generate a solution in the form of equation (3). Negative 
damping in equation (18) implies a homogeneous solution 
with exponential growth; thus, the bounded waveform (3) 
is unstable. 
 To make a practical generator for the encoded 
waveform (3), we need to suppress the unbounded 
homogeneous solutions. Also, we find it desirable to 
incorporate the original message signal as defined in 
equation (1). 
 

5. Transformed Equation 
 
 Moving toward a practical generator for the chaotic 
waveform, we first transform the differential equation to 
explicitly include the random signal in equation (1). To 
this end, we define a transformed waveform using the 
convolution 

      v t u t d   




    (19) 

where () is the square pulse defined in equation (2).  
Recognizing 

      dv du
t t d

dt dt
   





    (20) 

and 

      
2 2

2 2

d v d u
t t d

dt dt
   





    (21) 

and using the sifting properties of the delta function, we 
formally apply the convolution in equation (19) to the 
differential equation (18). This operation yields the 
transformed differential equation 

   
2

2 2
2

2 0
d v dv

v s
dtdt

        (22) 

where s = s(t) is the random signal defined in equation (1).
 Combining equations (3) and (19) allows us to write 
the transformed waveform as 

    m
m

v t s P t m



    (23) 

where 

      P t t d    




    (24) 

is the transformed basis function. Direct evaluation of 
equation (24) yields 

   

1
cos sin 2 , 0

2

1
1 cos sin 2 , 0 1

2

0, 1

t

t

t t t

P t t t t

t

 

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

        
          

 





 (25) 

which is plotted with the digital basis function (t) in 
Figure 4. As such, the waveform (23) satisfies the 
transformed differential equation (22). It can be shown 
that the waveform (23) is also chaotic [4]. However, 
similar to equation (18), this differential equation admits 
an unbounded homogeneous solution which renders the 
particular solution (23) atypical. 
 

 
Figure 3. Return map derived from the time-derivative 
of the encoded waveform. 
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6. Hybrid Oscillator 
 
 We have shown elsewhere that the waveform (23) with 
basis function (25) is an exact analytic solution to a 
chaotic hybrid oscillator [5], which is equivalent to an 
oscillator originally described by Saito and Fujita [6]. We 
write the hybrid oscillator as 

   
2

2 2
2

2 0
d v dv

v s
dtdt

        (26) 

  0 sgn
dv

s v
dt

    (27) 

where (27) defines a guard condition that sets the discrete 
state s(t) to equal the sign of the continuous state v(t) at 
each critical point in the waveform. This nonlinear 
dynamical system naturally generates a chaotic waveform 
in the form of equation (23). The hybrid oscillator is an 
example of exactly solvable chaos. 
 
 
7. Transformed Matched Filter 
 
 Our analysis initiated with the desire for a correlation 
receiver with a simple matched filter. To complete our 
analysis, we require the matched filter for the transformed 
basis function P(t). Using the operator notation, we 
equivalently seek the linear filter   such that 

    t P t    (28) 

where (t) is the impulse delta function and P(t) is the 
basis function in equation (25). We elect to write the filter 
as the composition 2 1 �  , where 1  is the 

matched filter (4) used to define the basis function (t). 
Using equation (6), we then find 

    2 t P t 
  (29) 

where    P t P t 


 is the time reverse of the 

transformed basis function. From equation (24), we find 

      P t t d    




   
 

 (30) 

which reveals the linear operator 2 .  Thus we define 

the filter 

    2y t x t   (31) 

as 

    
1t

t

y t x d 


   (32) 

where x(t) is its input and y(t) is its output. Combining 
equation (4) with the differential version of the filter (32), 
we write the composite matched filter � as 

   
2

2 2
2

2 0
d x dx

x v
dtdt

        (33) 

    1
dy

x t x t
dt

    (34) 

where v(t) is the input, x(t) is an intermediate state, and 
y(t) is the output [5]. That is, the differential equations 
(33) and (34) define an explicit matched filter for the 
transformed basis function (25). 
 
 
8. Conclusions 
 
 We have shown that, under certain practical constraints, 
the optimal communication waveform is chaotic. The 
efficacy of this waveform was previously confirmed for 
communication [5] and, more recently, for detection and 
ranging [7]. 
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