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Abstract—We introduce mathematical structure of localare given in sect. 2. In sect. 3, algorithms for univariate
minima, and propose a conceptaafjacent local miniman  functions are presented. In sect. 4, an algorithm for glob-
univariate multimodal functions. We rewrite the our previ-ally minimizing multivariate functions iterative using line
ous mathematical structure using the concept. We proposearch is presented. The results of a numerical experiment
an method for finding the global minimum of a multivariateand concluding remarks are shown in sect. 5 and 6.
function whose univariate function on line search is almost
lower unimodal sequence. We show using a numerical ex- Preliminary
ample that the methodfectively finds the global minimum
with only a few function evaluations. 2.1. Problem and mathematical structures of local

minima(maxima)

1. Introduction In this section and the next section, we consider a uni-
. variate minimization problem (P1):
Many methods have been proposed for solving a global min. f(x), xeD=[ab]CR, P1)

optimization (minimization) problem of a real valued func- . ) ) . ]
Supposd is a twice continuous function, and all local min-

tion f of n-variables with bounded constraints. ) ) ) &
Those methods can be mainly classified as determini&n@ of f in [a,zb] are isolated. These minima are denoted
a<xt<x<..-<xM < b, and these function values

tic approach and stochastic approach. The determinis T
approach is based on a branch and bound approach. & denoted by = f(x) (i = 1,2,.... M).
the other hand, some methods using a stochastic approaséfinition 1 In problem (P1), the functiori has astrictly
are based on random sampling and local search, then maswer unimodal sequendg@ereafter called animodal se-
recently proposed methods (SA, GA, DE, etc.) of this apguencg in the sequence of local minimal function values,
proach can be included in a heuristic framework [1]. if there existk € [2, M — 1] such that
However, searching spaces or sample size of those ap-( ! < x2 < ... < &1 < xk < x+l <. < XM
proaches exponentially increase with increase in the num-{ fls f25 .05 fhls fho flel o o fM 1)
ber of dimensions1 in the' problgm. .Th's phenomenon,is calledunimodal local minimal values function
known as the “curse of dimensionality”, led to the aban-
donment of those search methods in favour of ones usifgfinition 2 In eq.(1), if the following equation:
somea priori knowledge opriori structure of the function. VX X2 (L <ip<ip < M); io—ip =1, @)
In this paper, we consider a special structure of a univargg|gs, therx:, x? are callecadjacent local minima

ate functionf on an interval§, b] such that the sequence of e following theorem holds in the problem (P1)[4].
local minimal function values is lower unimodal. For the

type of functions has been already described in our pap&f€orem 1 A necessary and siicient condition such that
[3]. However, functions treated in our previous paper artocal minima of a function are all isolated on compact set
more restricted for multivariate functions using the struciS that number of local minima is finite. Moreover, if a
ture, that is, conventional method is restricted to local mindnivariate function is continuous the following property
ima run parallel to each coordinate. holds[3].

The purpose of this paper is to study the mathematicatheorem 2 If f is continuous and its all local minima are
structure of local minima (maxima) and of univariate multi-a|| isolated on & b], then there exists strictly monotoni-
modal functions, and to study a non-separable multivariaglly decreasing(increasing) region on the left(right) side
function whose local minimal values of the univariate funcof each local minimum.
tion on line segment in-dimensional search space is a al-
most unimodal sequence. We proposéfaative algorithm
for finding a global minimum of the type of functions.

The remainder of the paper is organized as follows. Rroperty 1 If a function f is continuous on an interval
problem and mathematical structure of univariate problera, b] and its all local minimum are all isolated, then the

From the theorem, the following properties can be easily
shown[4].
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following three properties holds. By the above investigation, it is concluded that points

1) All local maxima on &, b] are all isolated. X2, x%, ... generated by thlarge step minimizeconverge
2) If local minima and maxima rearrange in ascent ordetp dlﬂerent local minima®, x), ... by thesmall-step lo-
local minima and local maxima alternately line up. cal minimizey that is

3) There exists the strictly monotonic decreasing (increas- yymyxn  xM ML(xM5), XWe—ML(x"3)

ing) region on left (right) side of a local minimum (local — XM X (10)
maximum).

In order to sat|sfy equations (8), distance of two mutually
From the above study and assumptions of the problerdifferent points in the sequens® xt, ... generated by the
the following equation holds by repeatedly such a arrandarge-step minimizemust greater than the maximum width
of local minima and maxima, of unimodal regiorw, as follows:
a<W<xt< < <Xl xMcsiM<p  (3) YXTEYXY, XM — X" > W (11)
From the definition (1) of a unimodal sequence, for three
2.2. Mathematical structure of multimodal functions  pointsxXP> x> x, the following condition of enclosing

A unimodal region R(x.) of a local minimumx. of a the glo??l mmmzl;m(** ho:;js © o
function f is defined as the maximum region such that the 1) > 1) < 10 = x. e (P (12)
function f is unimodal[3]. By usind’roperty 1, the previ- The outline of the previous algorithm is as follows.
ous definition is more simply formulated as follows.

S1p. Bracketing a minimunx... by an interval kP, x¥}

Definition 3 The unimodal region is defined as follows
9 such thatf (xXP) > f(x?) < f(x"), xXP < XD < O,

i _rei-1 3
L R”(,X*)_[X* X] . . _(4) S2p. Reducing the interval¥” x"] such thatx.. e
Definition 4 In the unimodal regiom,(x,) atx,, its width [X(p) (r)] until the following stop condition holds.
w(X,) and radiug(x,) are formulated as follows. £P 5 £@ o £ 0 _ 0P o
wix) =X-X"  r(¥)=min(xX-x"LX-x}. (5)  S3p. Apply a one- dimensional global minimization al-

From the definition, the maximum and minimum widths  gorithm for the interval £, x].
of unimodal regions can be expressed as follows.

W= maxw(x),  w= min w(X). (6)

From the above investigations, the specification of the

1<i<M = 1<isM algorithmMGuf that finds the global minimumx.. and its
We show definitions on depths of a unimodal region aiinction valuef,, of a functionf(x) in a searching region
mathematical structure of multimodal functions. D = [a, b] for a given initial pointx?, its function valuef©,

. = an initial step size\, an upper limit of step sizé, maxi-
d I?eflfntlﬂon 5. Dzelper (_:Iepthji(xg an;l Sf_hal(ljowefr ﬁepth mum widthw and the minimum widttw of unimodal re-
d(x) of the unimodal regiofr,(X,) are defined as follows. gions and a toleranaeas follows:

(BQemaiGD- 1001160 ) (1) NG, B2 AT ).
d(xd) =min{f (X - £(x), F(x)— (X)) -

4. Algorithm and Results for Multivariate Functions
3. Algorithm for Univariate Functions
4.1. Outline of the previous algorithm
The idea of our previously proposed algorithm [3] is to
use a two-stage minimizer, 1)arge-step minimizeand 2)
asmall-step local minimizein each iteration. An outline min. f(x) xeD"= 1_[ Dj = 1—[ [a,,b] (Pn)
of the two stepsis as folows. ~ j=1ln  j=1..
1) The large-step minimizergenerates new points However, it cannot be formulated for multivariate func-
X%, x1, ... such that any two points are included in dif-tion f(x) like eq.(1). To overcome this problem, we con-
ferent unimodal regions, that is sider a problem with a univariate functigras follows:

VXM £Vx" and XMe Ry(X.), X"e Ry(x) a® = = argmirg(a) = f(x®+ad®)}, (PnL)

: i) A i i) — (8
= m_t(R“(X*)) n Im(R”(X*)) - wherex® is the starting point and® is the searching di-
where int) is an interior of a set. rection. Moreover, we assume that the functipalmost
2) Thesmall-step local minimizefinds a local minimum  satisfies equation (1), and the functigris globally mini-
X, in a unimodal regiorR,(x,) from a starting point mijzed by applying the previous globally minimization al-
X € Ry(X,) generated by thiarge-step minimizer gorithm. Such a minimization step is calledirze search
for X¥e Ry(x), x® —ML(x,5) = x®¥=x, (9) and the step is usually used at iteratiom minimization
whereML(x¥, 5) is a procedure of themall-step local Methods with updating of the new poixit*?:
minimizerwith a starting point* and small step. x® D x4 oWdW (k=0,1,2,...). (a)

We consider the following problem (Pn):
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Generally, directiord® is usually determined by gradi-  Find first |.m. %% and its function valu&® by local
entV f(x®) of function f. However, if the line search step  search: {°, %%) — MLnf(f©, x©, ¢).
is performed along this direction, the obtained poiit?  repeat
almost falls into a local minimum. In order to avoid this  2) Apply a.l.m.-search fronx°® alongi-coordinate

problem, the-th elemend® of d¥ is determined by two directionss, (i = 1,2, ..., n)O find adjacent local
adjacent local minima?, o2 from x® alongi-th coordi- minima%i, (i = 1,.., My) to %.
nate dlrect|one,land bot2h function values as follows: 3) Findn-a.l.m. and its function values b_§'/—step
qo_H@) =A@ o fMiae).  (13) local search:
' ai-a? (fl. &) —Mnf (fl, & K,e), (i=12...,n).

At last step, a local minimization methdd_nf(-) is ap- 4) Computed® by eq.(15) and set:
plied to problem (Pn) for finding a more accurate solution. ~ x®=1/(n+1) 3" % f0=f(x®);
We show an algorithm for finding the global minimum  ¢(a)= f(X(k)+ad(|8);

X.. and its function valué.. from a pointx(©@ for function f 5) Apply global line search: B
with maximum widthw and minimum widthw as follows. (F%D) o) — MGUfL(g, D, 0, xK, A, 5, &) ;
6) Update for the next iteration:

(f. X.) — MGNf1(f, D", f(O), X(O), A, (_5, W W, &, '9g) XK+ 3 (K) 4 (K gk : flkt1) f(x(k+1)) ¢ ke k+1;
1) Initialize: k — 0; f© — f(x©0): until  [la®d®]| < &.
repeat 7) Apply local searchvILnf to the pointx® and its func-

2) Computaj(k) by eq(13) and Sew(a) Ef(X(k)-Hl’d(k)) : tion Valuef(k): (f**, X**) «— MLn f(f(k), X(k), S).

3) Apply global line search: -

)(f(Efl)yO?(k))H MGUR( ¢, D, 0, x¥ A, 5,7, w, £); Wherdl MLnf"() is k'—step local search whose inner limit
4) Update for the next iteration: a of iteration is restricted tﬁl at stem).
x*+ D x® oMWl f(xk+D)y: kek+1;
until  [la®d®|| < &g 5. Numerical Experiments
5) Apply local searchMLnf to the pointx® and its
function value:f®: (f.., x..) — MLnf(f®, x®_¢). Conditions of this experiments and input parameters of

algorithms are as follows.

) ] e Our algorithm is performed 100 times per problem by
4.2. Outline of a new algorithm randomly generating initial points® in D".

In eq.13, if local maxima exists parallel to each coordi-* After the above 100 times trials per_each problem,
nate,d® will become a good approximation bth element mean of number of function evaluatiohi and mean
of steepest descent direction on lower envelope of function ©f obtained minimal function values, are calculated.
f. However it cannot be assumed that local maxima exist¢ For problems with periodic term on a objective func-
parallel to each coordinate, theffdirence found by several  tion, W andw are set per problem. For problems with a
local minima, it is possible to give a good approximation unimodal objective function, s&l = w = miny<j<n bj —

of the abova-th element of direction. a. For the other problem, these bounds set 0 .
Let simplex points that consists ai{1)-approximated ® The other input parameter is s&f = 3wl 6 = 0.2w,
local minimum(a.l.m.) be&!} (j = 0,...,n). In case gg = 0.4wande = 1.0x 10°°.
where nxnmatrix VS of simplex directions from first point ® Main program select¥Gnf1() in case wherév > 0,
% to n number of poin&?, %2, ..., X" is denoted by and select$/Gnf2(-) in case wher& = 0.
VS = (x2-50, %2-%0, ..., x"-%0). (14) The outline of other methods for comparison with our

method are shown in table 1.
A problem of n-variables withM-local minima is de-
noted byPrb., v, where Prb. is an abbreviated name.

Similarly, n-differences between the function valuex&t
and function values at the othepoints is denoted by

A= (P P =T f=f(x) (=1,...,n).
Using eq.(14) and eq.(15), simplex gradieitf and Table 1: Outline of methods for our comparison
searching directionl is determined as follows[&]

_ el g _ abbrev.
V*fz((vf) ) Al d=-V,f. (15) name method author(year)
We show an algorithm for finding the global minimum DEPD | Differentical Evolution using Ali and T6rn[1](2002)
X.. and its function valud.. from a pointx© for function Pre-calculated Dierentials
f with tolerancesy ande as follows. SCGA | Simplex Coding Genetic Hedar and
Algorithm(GA) Fukushima[2](2003)
(f. X.) — MGNf2(f, D", £00) xO) A, 5’ 8’89) GPSA Comb_in_ed Algorithm of GA | Kim, et al.[6](2009)
1) Initialize: ke 0; O  f(x©): and digital Pattern Search
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5.1. Problems with periodic term of DEPD method. In comparisons on problems with uni-
modal function and general multimodal functions, showed

o Griewank Problem( = 10, several thousands of local that the methodféectively finds the global minimum.

minima; G 5550
10 10 Table 2: Comparison our method and other methods for
min. fg(x)= 1+in2/4000_1_[ cos/ Vi), Problem(Prly,u) of n variables andv-local minima
i=1 i=1 Pronm | ALMS GPSA  SCGA DEPD
sub.  x e D? = [-60Q 600}". Graso00 | 563100 NA. N.A.  7,556100
The minimum of the problem ig... = (0,...,0), and Rlo.’1110 382100 N.A. N.A. 101,417100
its minimal function value id,. = 0. Zo1 90/100 497100 170100 N.A.
Input parameters are setwo= 2r, W= 2v10r based Zs, 161/100 1,13%00 998100 N.A.
on periods of [, cos(/ Vi), respectively. In 100 tri- Zios | 259100  7,576100 1,829100 N.A.
als for the problem, the mean of number of function 4201 | 460100 102,908.00 N.A. N.A.
evaluations ifN, = 5626, and the mean of obtained 24,5 jggigg jgzg‘l‘ 1’83%3 g'giﬁgg
L . P 10 4,7 ) '
minimal function value isf,, = 1.27 x 107, Sero | 515100 48424 106884 3489100

iAi — — 10.
e Rastrigin problemf = 10,M = 111% Ryg1110) (*) Each element denotd,/S.R.(S.R.:success % rate).

_ 10 (**) ALMS : Our method(Adjacent Local Minima Search).
min. fr(X)= 10n+z (¥*-10cos(ax))

i=1
sub. xe[-5.125.12]%0, 6. Conclusions

The minimum of the problem is... = (0,0,...,0), and ] ] o
its minimal function value i, =0. We have mainly proposeatljacent of local minimand

Input parameters are setWio= w = 1 based on period depth of a Iopal mipimas mathemgtical structyre of a uni-
of term—10 cos(2x;) of f. - varlgte funct_lon with isolated minima on an mterv_al con-

In 100 trials for the problem, the mean of number oftraint. We introduce the already proposed algorithm for
function evaluation isN. = 3816, and the mean of special univariate functions whose local minimal function
obtained minimal function value f,, = 4.26 x 10-14, values have unimodal sequence. Moreover, we investigated
two types of multivariate function similar to the above spe-
cial type of function, and propose two algorithms based
on adjacent local minima search. The results of a numeri-
e Zakharov problenm(={2,5,10, 20}, M=1; Z;251020,.1) cal example showed that the algorithffieetively finds the
4 global minimum with only a few function evaluations.

min. fz(x) =(zn: O.5ixi],
i=1

sub. xeD"=[-510], n=25,10 20.
The minimum of the problem ig.. = (0,0,...,0), [1] Dzemyda, G. ,Saltenis, V. andZilinskas, A. :

5.2. Problem with unimodal objective function
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