
IEICE Proceeding Series 
 
 
 
 
Continuous Global Minimization Method Based on Special 
Mathematical Structure of Objective Functions and Adjacent Local 
Minima Search 

 
 
Hideo KANEMITSU 

 
 
Vol. 1 pp. 215-218 
Publication Date: 2014/03/17 
Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers 

Downloaded from www.proceeding.ieice.org 



Continuous Global Minimization Method Based on Special Mathematical
Structure of Objective Functions and Adjacent Local Minima Search

Hideo KANEMITSU†

†Hakodate Campus, Hokkaido University of Education, Hakodate 040-8567, Japan
Email: † kanemitsu.hideo@h.hokkyodai.ac.jp

Abstract—We introduce mathematical structure of local
minima, and propose a concept ofadjacent local minimain
univariate multimodal functions. We rewrite the our previ-
ous mathematical structure using the concept. We propose
an method for finding the global minimum of a multivariate
function whose univariate function on line search is almost
lower unimodal sequence. We show using a numerical ex-
ample that the method effectively finds the global minimum
with only a few function evaluations.

1. Introduction

Many methods have been proposed for solving a global
optimization (minimization) problem of a real valued func-
tion f of n-variables with bounded constraints.

Those methods can be mainly classified as determinis-
tic approach and stochastic approach. The deterministic
approach is based on a branch and bound approach. On
the other hand, some methods using a stochastic approach
are based on random sampling and local search, then many
recently proposed methods (SA, GA, DE, etc.) of this ap-
proach can be included in a heuristic framework [1].

However, searching spaces or sample size of those ap-
proaches exponentially increase with increase in the num-
ber of dimensionsn in the problem. This phenomenon,
known as the “curse of dimensionality”, led to the aban-
donment of those search methods in favour of ones using
somea priori knowledge orpriori structure of the function.

In this paper, we consider a special structure of a univari-
ate functionf on an interval [a,b] such that the sequence of
local minimal function values is lower unimodal. For the
type of functions has been already described in our paper
[3]. However, functions treated in our previous paper are
more restricted for multivariate functions using the struc-
ture, that is, conventional method is restricted to local min-
ima run parallel to each coordinate.

The purpose of this paper is to study the mathematical
structure of local minima (maxima) and of univariate multi-
modal functions, and to study a non-separable multivariate
function whose local minimal values of the univariate func-
tion on line segment inn-dimensional search space is a al-
most unimodal sequence. We propose a effective algorithm
for finding a global minimum of the type of functions.

The remainder of the paper is organized as follows. A
problem and mathematical structure of univariate problem

are given in sect. 2. In sect. 3, algorithms for univariate
functions are presented. In sect. 4, an algorithm for glob-
ally minimizing multivariate functions iterative using line
search is presented. The results of a numerical experiment
and concluding remarks are shown in sect. 5 and 6.

2. Preliminary

2.1. Problem and mathematical structures of local
minima(maxima)

In this section and the next section, we consider a uni-
variate minimization problem (P1):

min. f (x), x ∈ D ≡ [a,b] ⊂ R, (P1)

Supposef is a twice continuous function, and all local min-
ima of f in [a,b] are isolated. These minima are denoted
by a < x1

∗ < x2
∗ < · · · < xM

∗ < b, and these function values
are denoted byf ∗i ≡ f (xi

∗) (i = 1,2, . . . ,M).

Definition 1 In problem (P1), the functionf has astrictly
lower unimodal sequence(hereafter called aunimodal se-
quence) in the sequence of local minimal function values,
if there existsk ∈ [2,M − 1] such that{

x1
∗ < x2

∗ < · · · < xk−1
∗ < xk

∗ < xk+1
∗ < · · · < xM

∗ ,
f 1
∗ > f 2

∗ > · · · > f k−1
∗ > f k

∗ < f k+1
∗ < · · · < f M

∗ ,
(1)

is calledunimodal local minimal values function.

Definition 2 In eq.(1), if the following equation:

∀xi1
∗ , xi2

∗ (1 ≤ i1 < i2 ≤ M); i2 − i1 = 1, (2)

holds, thenxi1
∗ , xi2

∗ are calledadjacent local minima.
The following theorem holds in the problem (P1)[4].

Theorem 1 A necessary and sufficient condition such that
local minima of a function are all isolated on compact set
is that number of local minima is finite. Moreover, if a
univariate function is continuous the following property
holds[3].

Theorem 2 If f is continuous and its all local minima are
all isolated on [a,b], then there exists strictly monotoni-
cally decreasing(increasing) region on the left(right) side
of each local minimum.

From the theorem, the following properties can be easily
shown[4].

Property 1 If a function f is continuous on an interval
[a,b] and its all local minimum are all isolated, then the
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following three properties holds.
1) All local maxima on [a,b] are all isolated.
2) If local minima and maxima rearrange in ascent order,
local minima and local maxima alternately line up.
3) There exists the strictly monotonic decreasing (increas-
ing) region on left (right) side of a local minimum (local
maximum).

From the above study and assumptions of the problem,
the following equation holds by repeatedly such a arrange
of local minima and maxima,

a ≤ x0
∗< x1

∗< x1
∗< x2

∗< · · ·< xM−1
∗ < xM

∗ < xM
∗ ≤ b (3)

2.2. Mathematical structure of multimodal functions

A unimodal region Ru(xi
∗) of a local minimumxi

∗ of a
function f is defined as the maximum region such that the
function f is unimodal[3]. By usingProperty 1, the previ-
ous definition is more simply formulated as follows.

Definition 3 The unimodal region is defined as follows

Ru(xi
∗)≡ [xi−1

∗ , xi
∗]. (4)

Definition 4 In the unimodal regionRu(xi
∗) at xi

∗, its width
w(xi

∗) and radiusr(xi
∗) are formulated as follows.

w(xi
∗) = xi

∗−xi−1
∗ , r(xi

∗) = min{xi
∗−xi−1

∗ , x
i
∗−xi

∗}. (5)

From the definition, the maximum and minimum widths
of unimodal regions can be expressed as follows.

w = max
1≤i≤M

w(xi
∗), w = min

1≤i≤M
w(xi

∗). (6)

We show definitions on depths of a unimodal region as
mathematical structure of multimodal functions.

Definition 5 Deeper depthd(xi
∗) and Shallower depth

d(xi
∗) of the unimodal regionRu(xi

∗) are defined as follows.{
d(xi

∗)≡max{ f (xi−1
∗ )− f (xi

∗), f (x∗)− f (xi
∗)},

d(xi
∗)≡min{ f (xi−1

∗ )− f (xi
∗), f (x∗)− f (xi

∗)}.
(7)

3. Algorithm for Univariate Functions

The idea of our previously proposed algorithm [3] is to
use a two-stage minimizer, 1) alarge-step minimizerand 2)
a small-step local minimizer, in each iteration. An outline
of the two steps is as follows.

1) The large-step minimizer generates new points
x0, x1, . . . such that any two points are included in dif-
ferent unimodal regions, that is

∀xm,∀xn and xm∈Ru(xi
∗), xn∈Ru(x j

∗)
=⇒ int

(
Ru(xi

∗)
)
∩ int

(
Ru(x j

∗)
)
= ∅, (8)

where int(·) is an interior of a set.
2) Thesmall-step local minimizerfinds a local minimum

xi
∗ in a unimodal regionRu(xi

∗) from a starting point
xk ∈ Ru(xi

∗) generated by thelarge-step minimizer:

for xk∈ Ru(xi
∗), x(k)

∗ ←ML(xk, δ) =⇒ x(k)
∗ = xi

∗, (9)

whereML(xk, δ) is a procedure of thesmall-step local
minimizerwith a starting pointxk and small stepδ.

By the above investigation, it is concluded that points
x0, x1, . . . generated by thelarge-step minimizerconverge
to different local minimax(0)

∗ , x
(1)
∗ , . . . by thesmall-step lo-

cal minimizer, that is

∀xm,∀xn, x(m)
∗ ←ML(xm, δ), x(n)

∗ ←ML(xn, δ)
=⇒ x(m)

∗ , x(n)
∗ .

(10)

In order to satisfy equations (8), distance of two mutually
different points in the sequencex0, x1, . . . generated by the
large-step minimizermust greater than the maximum width
of unimodal regionw, as follows:

∀xm,∀xn, |xm − xn| > w. (11)

From the definition (1) of a unimodal sequence, for three
pointsx(p)

∗ > x(q)
∗ > x(r)

∗ , the following condition of enclosing
the global minimumx∗∗ holds.

f (x(p)
∗ ) > f (x(q)

∗ ) < f (x(r)
∗ ) =⇒ x∗∗ ∈ (x(p)

∗ , x
(r)
∗ ) (12)

The outline of the previous algorithm is as follows.

S1p. Bracketing a minimumx∗∗ by an interval [x(p)
∗ , x

(r)
∗ ]

such thatf (x(p)
∗ ) > f (x(q)

∗ ) < f (x(r)
∗ ), x(p)

∗ < x(q)
∗ < x(r)

∗ .
S2p. Reducing the interval [x(p)

∗ , x
(r)
∗ ] such thatx∗∗ ∈

[x(p)
∗ , x

(r)
∗ ] until the following stop condition holds.

f (p)
∗ > f (q)

∗ < f (r)
∗ , x(r)

∗ − x(p)
∗ ≈ 2w.

S3p. Apply a one-dimensional global minimization al-
gorithm for the interval [x(p)

∗ , x
(r)
∗ ].

From the above investigations, the specification of the
algorithmMGuf that finds the global minimumx∗∗ and its
function valuef∗∗ of a function f (x) in a searching region
D = [a,b] for a given initial pointx0, its function valuef 0,
an initial step size∆, an upper limit of step sizeδ, maxi-
mum widthw and the minimum widthw of unimodal re-
gions and a toleranceε as follows:

( f∗∗, x∗∗) ←MGuf( f , D, f 0, x0, ∆, δ,w, w, ε ).

4. Algorithm and Results for Multivariate Functions

4.1. Outline of the previous algorithm

We consider the following problem (Pn):

min. f (x) x∈Dn ≡
∏

j=1,...,n

D j ≡
∏

j=1,...,n

[a j , b j ]. (Pn)

However, it cannot be formulated for multivariate func-
tion f (x) like eq.(1). To overcome this problem, we con-
sider a problem with a univariate functionϕ as follows:

α(k) = argmin
α
{ϕ(α) ≡ f (x(k)+αd(k)) }, (PnL)

wherex(k) is the starting point andd(k) is the searching di-
rection. Moreover, we assume that the functionϕ almost
satisfies equation (1), and the functionϕ is globally mini-
mized by applying the previous globally minimization al-
gorithm. Such a minimization step is called aline search,
and the step is usually used at iterationk in minimization
methods with updating of the new pointx(k+1):

x(k+1)← x(k) + α(k)d(k), (k = 0,1, 2, . . .). (a)
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Generally, directiond(k) is usually determined by gradi-
ent∇ f (x(k)) of function f . However, if the line search step
is performed along this direction, the obtained pointx(k+1)

almost falls into a local minimum. In order to avoid this
problem, thei-th elementd(k)

i of d(k) is determined by two
adjacent local minimaα1

∗, α
2
∗ from x(k) along i-th coordi-

nate directionei and both function values as follows:

d(k)
i =−

ϕi(α1
∗) − ϕi(α2

∗)

α1
∗− α2

∗
, ϕi(α) ≡ f (x(k)+αei). (13)

At last step, a local minimization methodMLn f(·) is ap-
plied to problem (Pn) for finding a more accurate solution.

We show an algorithm for finding the global minimum
x∗∗ and its function valuef∗∗ from a pointx(0) for function f
with maximum widthw and minimum widthw as follows.

( f∗∗, x∗∗)←MGnf1( f , Dn, f (0), x(0), ∆, δ,w, w, ε , εg )
1) Initialize: k← 0 ; f (0)← f (x(0)) ;
repeat

2) Computed(k) by eq.(13) and set:ϕ(α)≡ f (x(k)+αd(k)) ;
3) Apply global line search:

(f (k+1), α(k))←MGuf( ϕ, D, f (k), x(k), ∆, δ,w, w, ε ) ;
4) Update for the next iteration:

x(k+1)←x(k)+α(k)d(k) ; f (k+1)← f (x(k+1)) ; k←k+1 ;
until ∥α(k)d(k)∥ < εg.
5) Apply local searchMLn f to the pointx(k) and its
function value:f (k): ( f∗∗, x∗∗)←MLn f( f (k), x(k), ε).

4.2. Outline of a new algorithm

In eq.13, if local maxima exists parallel to each coordi-
nate,d(k)

i will become a good approximation ofi-th element
of steepest descent direction on lower envelope of function
f . However it cannot be assumed that local maxima exists
parallel to each coordinate, the difference found by several
local minima, it is possible to give a good approximation
of the abovei-th element of direction.

Let simplex points that consists of (n+1)-approximated
local minimum(a.l.m.) be{x̃ j

∗} ( j = 0, . . . ,n). In case
where,n×n matrixVS

∗ of simplex directions from first point
x̃0
∗ to n number of point̃x1

∗, x̃
2
∗, . . . , x̃

n
∗ is denoted by

VS
∗ = (x̃1

∗− x̃0
∗, x̃2

∗− x̃0
∗, . . . , x̃n

∗− x̃0
∗). (14)

Similarly, n-differences between the function value atx̃0
∗

and function values at the othern-points is denoted by

∆
f
∗ =
(
f̃

1
∗− f̃

0
∗, f̃

2
∗− f̃

0
∗, . . . , f̃

n
∗− f̃

0
∗
)T
, f̃

i
∗≡ f (x̃i

∗) (i=1, . . . ,n).

Using eq.(14) and eq.(15), simplex gradient∇̃∗ f and
searching directiond is determined as follows[5]．

∇̃∗ f=
(
(VS
∗ )T
)−1
∆

f
∗ , d = −∇̃∗ f . (15)

We show an algorithm for finding the global minimum
x∗∗ and its function valuef∗∗ from a pointx(0) for function
f with toleranceεg andε as follows.

( f∗∗, x∗∗)←MGnf2( f , Dn, f (0), x(0), ∆, δ, ε , εg )
1) Initialize: k← 0 ; f (0)← f (x(0)) ;

Find first l.m. x̃0
∗ and its function valuẽx0

∗ by local

search: (̃f
0
∗, x̃

0
∗)←MLn f( f (0), x(0), ε).

repeat
2) Apply a.l.m.-search from̃x0(k)

∗ alongi-coordinate
directionsei (i = 1,2, . . . , n)，find adjacent local
minima x̃i

∗L (i = 1, ..,M1) to x̃0
∗.

3) Findn-a.l.m. and its function values byk
i
-step

local search:
( f̃

i
∗, x̃

i
∗)←MLn f r ( f̃ i

∗L, x̃i
∗L, k

i
, ε), (i = 1,2, . . . ,n).

4) Computed(k) by eq.(15) and set:
x(k)=1/(n+1)

∑n
i=0 x̃i

∗ ; f (k)= f (x(k)) ;
ϕ(α)≡ f (x(k)+αd(k)) ;

5) Apply global line search:
(f (k+1), α(k))←MGuf1(ϕ, D, f (k), x(k), ∆, δ, ε ) ;

6) Update for the next iteration:
x(k+1)←x(k)+α(k)d(k) ; f (k+1)← f (x(k+1)) ; k← k+1 ;

until ∥α(k)d(k)∥ < εg.
7) Apply local searchMLn f to the pointx(k) and its func-
tion value f (k): ( f∗∗, x∗∗)←MLn f( f (k), x(k), ε).

Where，MLn f r (·) is k
i
-step local search whose inner limit

of iteration is restricted tok
i
at step3).

5. Numerical Experiments

Conditions of this experiments and input parameters of
algorithms are as follows.

• Our algorithm is performed 100 times per problem by
randomly generating initial pointsx(0) in Dn.

• After the above 100 times trials per each problem,
mean of number of function evaluationsNe and mean
of obtained minimal function valuesf ∗∗ are calculated.

• For problems with periodic term on a objective func-
tion, w andw are set per problem. For problems with a
unimodal objective function, setw = w = min1≤i≤n bi −
ai . For the other problem, these bounds set 0 .

• The other input parameter is set∆(0) = 3w，δ = 0.2w,
εg = 0.4w andε = 1.0× 10−5.

• Main program selectsMGnf1(·) in case wherew > 0,
and selectsMGnf2(·) in case wherew = 0.

The outline of other methods for comparison with our
method are shown in table 1.

A problem of n-variables withM-local minima is de-
noted byPrb.n,M, where Prb. is an abbreviated name.

Table 1: Outline of methods for our comparison

abbrev.

name
method author(year)

DEPD Differentical Evolution using Ali and Törn[1](2002)
Pre-calculated Differentials

SCGA Simplex Coding Genetic Hedar and
Algorithm(GA) Fukushima[2](2003)

GPSA Combined Algorithm of GA Kim, et al.[6](2009)
and digital Pattern Search
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5.1. Problems with periodic term

• Griewank Problem(n = 10, several thousands of local
minima;G10,5̃000)min. fG(x)=1+

10∑
i=1

x2
i /4000−

10∏
i=1

cos(xi/
√

i),

sub. x ∈ D10 = [−600,600]10.

The minimum of the problem isx∗∗ = (0, . . . ,0), and
its minimal function value isf∗∗ = 0.
Input parameters are set tow= 2π, w= 2

√
10π based

on periods of
∏10

i=1 cos(xi/
√

i), respectively. In 100 tri-
als for the problem, the mean of number of function
evaluations isNe = 562.6, and the mean of obtained
minimal function value isf ∗∗ = 1.27× 10−10.

• Rastrigin problem(n = 10, M = 1110; R10,1110)min. fR(x)=10n+
10∑
i=1

(
x2

i −10 cos(2πxi)
)

sub. x∈ [−5.12,5.12]10.

The minimum of the problem isx∗∗ = (0,0, . . . , 0), and
its minimal function value isf∗∗=0.
Input parameters are set tow = w = 1 based on period

of term−10 cos(2πxi) of f .
In 100 trials for the problem, the mean of number of

function evaluation isNe = 381.6, and the mean of
obtained minimal function value isf ∗∗ = 4.26× 10−14.

5.2. Problem with unimodal objective function

• Zakharov problem(n= {2,5,10,20}, M=1; Z{2,5,10,20},1)min. fZ(x)=

 n∑
i=1

0.5ixi

4,
sub. x ∈ Dn = [−5,10]n, n = 2,5,10,20.

The minimum of the problem isx∗∗ = (0, 0, . . . ,0),
and its minimal function value isf∗∗=0.
In 100 trials for the problem, the mean of number of

function evaluations areNe = {89.9(n= 2), 161.2(n=
5), 255.2(n = 10), 460.1(n = 20)}, and the mean of
obtained minimal function value aref ∗∗ = {0.313(n=
2), 2.02(n=5), 1.84(n=10), 1.67(n=20)} × 10−12.

5.3. Problems with general multimodal function

• Shekel problems(n = 4, M = {5,7,10}; S4,{5,7,10})min. fS(x)=
M∑
j=1

 4∑
i=1

(xi −Ci j )
2 + β j


−1

,

sub. x ∈ D4 = [0,10]4, M = 5,7,10.

5.4. Comparison of results

Comparisons of our method and other methods is shown
in table 2. In comparisons of results on problems with pe-
riodic term, showed that our method finds the global mini-
mum of 7.5%–0.38% in the number of function evaluations

of DEPD method. In comparisons on problems with uni-
modal function and general multimodal functions, showed
that the method effectively finds the global minimum.

Table 2: Comparison our method and other methods for
Problem(Prb.n,M) of n variables andM-local minima

Prb.n,M ALMS GPSA SCGA DEPD
G10, ˜5000 563/100 N.A. N.A. 7,556/100
R10,1110 382/100 N.A. N.A. 101,417/100
Z2,1 90/100 491/100 170/100 N.A.
Z5,1 161/100 1,138/100 998/100 N.A.
Z10,1 255/100 7,576/100 1,829/100 N.A.
Z20,1 460/100 102,908/100 N.A. N.A.
S4,5 482/100 456/34 1,086/79 4,351/100
S4,7 485/100 464/21 1,087/87 3,614/100
S4,10 515/100 484/24 1,068/84 3,489/100
(*) Each element denoteNe/S.R.(S.R.:success % rate).
(**) ALMS : Our method(Adjacent Local Minima Search).

6. Conclusions

We have mainly proposedadjacent of local minimaand
depth of a local minimaas mathematical structure of a uni-
variate function with isolated minima on an interval con-
straint. We introduce the already proposed algorithm for
special univariate functions whose local minimal function
values have unimodal sequence. Moreover, we investigated
two types of multivariate function similar to the above spe-
cial type of function, and propose two algorithms based
on adjacent local minima search. The results of a numeri-
cal example showed that the algorithm effectively finds the
global minimum with only a few function evaluations.
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