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Abstract—Monte Carlo (MC) simulation methods are
widely used to solve complex engineering and scientific
problems. Unlike other deterministic methods, MC pro-
duce solution with uncertainty through statistical sampling.
As the sample size N growths, the uncertainty of the solu-
tion reduces. It is well-know that the variance of the er-
ror decreases as 1/N. However, for large problems like
high-dimensional integrations and computationally inten-
sive simulations this can take months or even years to ob-
tain the solution with acceptable tolerance. The Super-
efficient Monte Carlo simulation method, originated by
Umeno, produced a solution that converges as fast as 1/N 2,
However it only applies to a small class of problems that
possess certain properties. We proposed an Approximate
Super-efficient Monte Carlo simulation method that is ap-
plicable to a wider class of problems than the original
Umeno method, where the convergence rate is as fast as
I/N*forl <a <2.

1. Introduction

Ulam and von Neumann first formulated the Monte
Carlo (MC) simulation methodology using random se-
quence to evaluate high-dimensional integrals [1]. Since
then MC simulations have been used in myriads of appli-
cations to evaluate performances of various systems that
are not analytically tractable.

The simplest form of MC simulation draws independent
samples from a distribution p(x) to approximate the inte-
gration. More specifically, if we want to evaluate the inte-
gral
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where the integrand A(x) is on the domain ¢ R”, we first

define a function
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and approximate (1) by calculating the N-sample average
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Here, N is the sample size, X;’s are random variables with
a common probability density function (pdf) po(x), and E[.]
is the expectation operator.

The summation (3) converges almost surely to [ if the
samples X;’s are independent by the Law of Large Num-
bers. Furthermore, the variance of the approximation de-
creases to zero at the rate of 1/N. That is,

1 N
ﬁ;mm

Generating truly random sequences in a controlled man-
ner is non-trivial. In practice, we generate pseudo-random
(PR) sequences instead. A PR sequence is generated deter-
ministically by some transformations like linear congruen-
tial recursion [1]. They appear random from the statistical
point of view.

1
Var = NVar [B(X1)]. 4)

2. Chaotic MC Simulation

The chaotic MC simulation is the MC simulation
with PR sequence replaced by a chaotic sequence [2].
More specifically, consider an ergodic dynamical system
(Q, A, p, T), where A is the o-algebra on Q, p(x) dx is the
invariant measure and 7 is a measure-preserving automor-
phism on Q [3]. The chaotic sequence (x|, X2, X3, ... ) with
seed xo € Q under T is generated by

Xis1 =T(x), fori=0,1,2,.... (5)

The chaotic MC simulation approximates the integration
(1) by the “time-average”

1 N
wmm:ﬁ;mm. 6)

If the modified integrand B € L;(Q,p) is Lebesgue inte-
grable, then the approximation (6) converges to I almost
surely by ergodicity [3].

2.1. Statistical and Dynamical Correlation

The greatest distinction between conventional and
chaotic MC simulation is that the chaotic sequence has cor-
relation between samples. It turned out that the correlation
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has tremendous impact on the convergence rate of the ap-
proximation.

We can view {B,|B, = B(T"xp), xo € Q},en as a station-
ary random process on (Q, A, p). Denote its autocorrela-
tion function by R(k) = E[(Bi+1 — I)(By — I)] and denote
(B(x;))n by (B)y for simplicity. The variance of the ap-
proximation error (B)y — I is

1 N
oy = E[((B)N - 1)2] = E[(ﬁ Z(B,- - 1)2] )
i=1
N
= % E[;(Bi -D*+2 ;(B,- - D(Bj - I)] @
= SVar(Bl+ 5 3 R~ ) ©)

i>j

1 2 ¥
= VarlBl + ;(N — OR(K). (10)

The first term in (10) is called the statistical correlation,
which depends on the integrand B and the invariant mea-
sure p(x) dx. The second term is called the dynamical cor-
relation, which depends on the integrand as well as the
chaotic sequence [2].

2.2. Super-Efficient Chaotic MC Simulation

Rewrite the variance of the approximation error (7) as

N N
= [Var [B] + 22R(k)) —% D kRG). (D)
N k=1 N k=1

n

This shows that the convergence rate of 0']2\, has two con-
tributors, one decaying as 1/N and the other as 1/N?. The
asymptotic convergence rate for the chaotic MC simula-
tion is dominated by 1/N, which has the same performance
as the standard MC simulation. However, if the dynamic
correlation makes the term n = 0, the convergence rate be-
comes 1/N%. We say the chaotic MC simulation is Super-
Efficient (SE) if the variance of the approximation error de-
cays as 1/N? for N — oo. Clearly that the necessary and
sufficient condition for super-efficiency is = 0 [2].

2.3. Theoretical Basis for Super-Efficient MC Simula-
tion

Umeno observed that some integrands under chaotic
mapping make the chaotic MC simulation super-efficient
[2]. We call these integrands Super-Efficient (SE) under
suitable chaotic mapping.

It is not clear how super-efficiency leads to a practical
algorithm until Yao [4] saw the connection between Super-
Efficiency and the Lebesgue spectrum of ergodic theory
[3]. This observation helps us explain the super-efficiency
systematically and hopefully leads to practical algorithms
as detailed in the next section.

Let A and F be index sets. A dynamic system is said to
have Lebesgue spectrum if there exists an orthogonal basis
{1} U {fajl1 € A, j € F}, where A labels the classes and j
labels the functions within each class such that

fajoT = fajst

for all A and j. That is, within each class A, the operation
of T on f) ; is invariant in the same class. The cardinality
of A is called the multiplicity of the Lebesgue spectrum.

Since {1} U {f3 ;} is a complete orthogonal basis, every
function in L*(Q, p) can be represented as the generalized
Fourier series

(12)

BO) =bo+ Y > bafuio), (13)

AeA j=0

where by is the coefficient corresponds to the constant basis
function 1. It is clear that E[B] = by = I is the desired
integral (1).

Substitute (11) by (13), we find

n= Z[wa]z = 0.

AeA \ j>0

(14)

Therefore the explicit condition for super-efficiency is that
the sum of coefficients in each class A be zero, that is

d; :=Zbﬂ,j=0fora1ue/\. (15)

J=0

The Chebyshev dynamic system (Q,A,p,T,) has
Lebesgue spectrum [3]. The chaotic mapping 7, is the
Chebyshev polynomial with prime degree p, defined on
Q=[-1,1] as

T,(x) = cos(p arccos(x)), (16)
and the invariant measure is
1
p(x)dx = ————=dx. (17
V1l — x2
The basis function is given by
Saj(x) = Thpi(x), YVAEA, jEF, (18)

where A is the set of non-negative integer relatively prime
topand F ={0,1,2,...}. Note that = 0 corresponds to
the class with a single function Ty(x) = 1.

Example 2.1. Consider the integrand [2, p. 1447]

8 +8x+(1+e)x—1
VIl — 2

Under the Chebyshev dynamical system (€, A,p,T)p),
B(x) can be expanded as

A(x) =

= Be(x)p(x).  (19)

Be(x) = (1 + )T1(x) = Ta(x). (20)
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If p = 2, the coefficients of the generalized Fourier series
are bip = 1 + €, byp = —1 and zero otherwise. The sum
of coefficients are d; = e and d; = 0 for A # 1. Therefore
A(x) is super-efficient if and only if € = 0. When € # 0
we have “mismatched” SE MC simulation, which appears
to be super-efficient for small N but gradually loses super-
efficiency as N increases [5]. See Fig. 1.

ventional

10 10 10* 10
N

Figure 1: The variance of the approximation error 0',2\, ver-

sus the number of samples N. The slope of the conventional
MC simulation curve is —1, indicating its 1/N behaviour.
On the other hand, the slope of the super-efficient MC sim-
ulation is —2 because 0% decays like 1/N?. Between these
two extremes are the mismatched SE MC simulations with
different size of €. For € = 0.001, the curve is almost iden-
tical to the super-efficient curve. As € becomes larger, the
slope of the mismatched SE MC simulations gradually in-
crease as N becomes larger.

3. Approximate SEMC Simulation

The collection of SE integrands can be seen as an affine
subspace of L?(Q, p). Clearly most integrands are not SE.
This implies chaotic MC simulation has no advantage over
conventional MC simulation in general.

While most integrands do not satisfy the SE condition,
Yao proposed the Approximate Super-Efficient (ASE) al-
gorithm [4] that modifies the integrand so that it is approx-
imately SE, and by applying chaotic MC simulation on the
modified integrand, we get a much faster convergence rate
of 1/N® for a between 1 to 2.

A crucial observation here is adding a function that has
zero mean to B(x) will not change the integral of B(x)
[6]. In [6], a concept equivalent to ASE was proposed by
Umeno in 2001. Therefore, if we know the sum of coeffi-
cients d, in each class 4, then the new integrand

B'(x) = B(x) - > difio(x)

AeA

21

will be super-efficient without changing the integral of B(x)
(recall the basis functions f)o(x)’s have zero mean). We
call the function d, f) o(x) the compensator associate with
class A. By subtracting compensators from B(x), we intro-
duce negative dynamical correlation and makes the chaotic
MC simulation nearly super-efficient.

In practice we do not know the sum of coefficients, and
it is not possible to construct infinitely many compensators
to achieve perfect super-efficiency. The idea of ASE algo-
rithm is to approximate the sum of coefficients d, by its
L,-term partial sum

dy~byo+by+--+byy, (22)

using conventional MC or chaotic MC simulations, where
L, is some hopefully not too large positive integer. Then
we form the modified integrand

B(x) =B - ) difro), (23)

AeAp

where the index set A; contains L classes. If the sum of
coefficients d, = d, — 3) of B is close to zero and =
S ieady = € > 0 is small, then from (11) the variance of
the approximation error can be written as

2
2 _ € ¢
Oy = N + m (24)
for some . The effective convergence rate can be ex-
pressed as 1/N® for @ € [1,2], depending on the accuracy
of d’s.

The procedure of the ASE algorithm is as follows:

1. Approximate the sum of coefficients d,’s in (22) using
conventional or chaotic MC simulation for each 1 €
AjL.

2. Subtract the compensators from the integrand B(x) to
form B(x) as defined in (23), and apply chaotic MC
simulation on B(x).

ASE simulation is approximately super-efficient for
moderate size of N, however, from (24) and Example 2.1 it
is clear that ASE simulation will eventually lose the 1/N?
convergence rate as long as € # 0.

Biglieri suggested computing d,’s iteratively to improve
the accuracy of the estimation [5]. As opposed to the origi-
nal ASE algorithm, which has fixed accuracy for the entire
simulation, we proposed a Progressive ASE algorithm that
keeps improving the accuracy of d;’s as the chaotic MC
simulation goes on. The idea is to use the samples B(x;)
generated in the main chaotic MC simulation to estimate
dy’s continuously. Therefore we get progressively better
estimates of d,’s and improve the decay rate.

Example 3.1. Consider the Chebyshev dynamical system
(Q, A, p, T») and the integrand [5]

A(x) = (1 = x*) exp(=x") = B(x)p(x). (25)
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Figure 2: The variance of approximation error 0'12\, versus
the number of samples N. Throughout the entire simula-
tion, both the conventional and super-efficient MC simu-
lation constantly has 1/N and 1/N? behavior respectively.
The ASE MC simulations have 1/N? behavior at first but
gradually degraded to 1/N. ASE simulations with larger
number of n have better accuracy of the estimates d,’s and
lose super-efficiency later. The Progressive ASE simula-
tion has 1/N behavior at first but gradually improves to
1/N?, because the estimates cfﬂ’s get more accurate as N
increases.

Unlike the previous example, the modified integrand B(x)
has infinitely many terms in the generalized Fourier series
expansion. We choose L and L, such that the the degree of
Jfar,(x) is at most 10. We perform chaotic MC simulation
for 10° samples using conventional, ASE and Progressive
ASE MC algorithms, see Fig.2. As a benchmark, we com-
pute the sum of coefficients using accurate numerical inte-
gration for the super-efficient case (marked by circle). For
ASE MC simulations, we use different number of samples
n to estimate d;’s to demonstrate the effect of inaccurate
estimates and convergence rate. For Progressive ASE MC
simulation we estimate d;’s at the same time as the chaotic
MC simulation runs.

To better visualize the decay exponent @, we plot N 0']2\]
versus N and observe its slope. From (11), if the integrand
is nearly super-efficient, then the slope of No-lz\, will be neg-
ative. Otherwise it would be flat. See Fig.3.

4. Conclusions and Future Works

While conventional MC simulation yields the conver-
gence rate of 1/N, SE MC has superior convergence of
1/N? for integrands of the SE type. Since most integrands
are not SE, we introduce the concept of ASE. The ASE
and Progressive ASE algorithms are at least as fast as con-
ventional MC simulation and sometimes they yield near
super-efficient convergence rate. Furthermore, we use the

Conventional

10 ,' Progressive

2
N><<5N

Figure 3: To see the decay exponent @ more clearly, we
plot N 0'%, versus the number of samples N. The Na'%, curve
for the conventional MC simulation is flat, because 7 is
large and it dominates the convergence rate. The curve for
the super-efficient MC simulation has negative slope be-
cause 7 is so small that the remaining 1/N term dominates.
For ASE MC simulations with sample size n = 1,000 and
n = 10,000, the super-efficiency is lost before N < 10°.
For n = 100, 000, it is super-efficient up to around N = 10%,
The Progressive ASE simulation gains super-efficiency af-
ter N = 10*.

Lebesgue spectrum of the Ergodic theory to systematically
study the SE MC simulation. The above discussions are
applicable to multi-dimensional integrands. It is of great
interest to find more applications to exploit the concept of
SE and ASE.
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