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Abstract—Methods of visualizing the stretch-and-fold
mechanism in chaotic dynamical systems helps us deter-
mine whether an observed time-series is chaotic or not,
and let us analyze the dynamics more precisely. We have
already proposed a semi-automatic method for visualiz-
ing the stretch-and-fold mechanism, which can be applied
to chaotic dynamical systems even if the structure of the
chaotic dynamical systems is unknown. In this paper, we
extend this method using the entropy and we show that the
proposed method can detect the stretch-and-fold mecha-
nism more clearly. We also show that the proposed method
can perform accurately as the conventional method, and
can be applied to a high-dimensional chaotic dynamical
system and a time-series by numerical simulations.

1. Introduction

In our daily life, we can often observe various kinds of
complex phenomena, which might be generated from de-
terministic nonlinear, possibly chaotic dynamical systems.
Therefore, it is important to analyze characteristic proper-
ties of the nonlinear dynamics to realize novel engineering
applications. Among several essential characteristics of the
nonlinear dynamics, stretch-and-fold mechanism[1] is one
of the most important ones to produce chaotic dynamics.
Several methods for analyzing the stretch-and-fold mecha-
nism have been proposed. The Poincaré section is a basic
and important analysis method to detect and evaluate the
stretch-and-fold mechanism. Although the Poincaré sec-
tion often works well to detect the stretch-and-fold mech-
anism, we have to appropriately assign the transversal sec-
tions on chaotic attractors when we use the Poincaré sec-
tions. To solve this issue and realize a semi-automatic
assignment, we have already proposed a method[2, a, b]
based on the Lorenz plot[3].

In this paper, by using the entropy, we extend the method
based on the Lorenz plot to visualize the stretch-and-
fold mechanism embedded in the chaotic dynamics more
clearly, and to make it possible to analyze quantitatively.
We show that these methods can detect the stretch-and-fold
mechanism clearly enough as the Poincaré section method.
We also examine the performance of the method when it

is applied to a high-dimensional chaotic dynamical system
and a chaotic time-series. Through these examination, we
show that the method can be applied to real data which are
often obtained as a time-series and are embedded in a high-
dimensional state space.

2. Methods detecting the stretch-and-fold mechanism

The Poincaré section detects the stretch-and-fold mecha-
nism embedded in a chaotic attractor by assigning transver-
sal sections manually on the chaotic attractor. On the
Poincaré section, intersection of trajectories of the chaotic
attractor is presented by points on the section. Based on
the Poincaré section, the Lorenz plot section[2, a, b] identi-
fies a Poincaré map on a curved surface semi-automatically
by introducing the Lorenz plot[3]. In the method, first,
local maxima of a time-series x(t) produced or observed
from a nonlinear dynamical system are identified as X(n) ≡
x(t0(n)), where t0(n) is the occurrence time of the nth lo-
cal maximum. Then, the time interval between t0(n) and
t0(n + 1) is equally divided by k − 1 points, ti(n) (i =
1, 2, · · · , k − 1). Finally, the ith divided points are plotted
on the ith surface (Fig.1). Figure 2 shows the Lorenz plot

Figure 1: The method to set the points on the Lorenz plot
section.

section on the Rössler attractor derived from the Rössler
equations[4]: 

ẋ = −y − z,
ẏ = x + 0.23y,
ż = 0.34 − 4.5z + xz.

(1)
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Figure 2: Applying the Lorenz plot section method to a
chaotic Rössler attractor. Blue points exist on the curved
Lorenz plot sections.

From Fig.2, we can detect the stretch-and-fold mechanism
clearly by moving the section and observe points plotted
on the sections getting stretched and folded. However, it
may be difficult to take the same way if we have to detect
the stretch-and-fold mechanism in more complex systems
or when the dimension of a system is higher. Therefore, we
use the entropy to evaluate the stretch-and-fold mechanism
in a more specific way.

We assume that the entropy of distributed points on
the section will become higher when a set of points is
stretched and lower when it is folded. Based on this
idea, we evaluated how the entropy of points on the sec-
tions will change by moving the phases of the sections.
First, we defined a rectangular box which exactly bounds
the attractor by using the maximum and minimum values
(xmax, xmin, ymax, ymin, zmax and zmin) of three variables (x, y
and z) of possible chaotic attractors (Fig.3). Then, in this
rectangular box, we defined (l − 1)3 infinitesimal rectangu-
lar boxes by dividing the ranges (xmin ≤ x ≤ xmax, ymin ≤
y ≤ ymax and zmin ≤ z ≤ zmax) of each variable equally into l
pieces. Thus, each infinitesimal rectangular box is bounded
by [xi, xi+1], [y j, y j+1] and [zk, zk+1](i, j, k = 1, 2, . . . , l − 1).
By using these infinitesimal rectangular boxes, we defined
the entropy

H = −
(l−1)3∑
m=1

(Pm/N) log(Pm/N), (2)

where Pm denotes the number of points included in the mth
infinitesimal rectangular box and N denotes the number of
all points. Next, to remove arbitrariness of placements of
the boxes, we calculated an average value of the entropy
Have at all possible placement by shifting the boundaries
(xmax, xmin, ymax, ymin, zmax, and zmin).

3. Embedding

When we analyze properties of an observed time-series,
we often reconstruct it in an m-dimensional state space by
using a time-delay coordinate. In this method, when the

Figure 3: The method to calculate the entropy when l = 3.
The highlighted boxes (in this example, two boxes) include
points of the section.

time-delay and the dimension m are set appropriately, dif-
feomorphism of a dynamical structure of the embedded
time-series and the unknown original dynamical system
of the time-series is guaranteed by the Takens embedding
theorem[5]. To reconstruct the state space, an observed
time series x(1), x(2), x(3), · · · x(N) is transformed by using
the following equation:

u(t) = (x(t), x(t + τ), . . . , x(t + (m − 1)τ)) (3)

where, τ is the time-delay and m is a dimension of a recon-
structed attractor. In this paper, we set τ to the first time
when the mutual information takes the minimum value, so
that the coordinate values of u(t) are less correlated[6], and
m = 3 considering the calculation time.

4. Results and Discussions
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Figure 4: Entropy change of the Poincaré section of the
Rössler attractor. The average values Have of the entropy H
of the sections are plotted with 1, 000 trials. The number of
sections is 192 and l = 50.

First, we show how the entropy Have of Poincaré sec-
tion of the Rössler attractor changes in Fig.4. We will
use the Poincaré section as a standard method, because
the Poincaré section method can detect the stretch-and-fold
mechanism quite clearly. From Fig.4, first, the entropy
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gradually increases, and when it gets to the peak, it grad-
ually decreases. This means that the points plotted on the
sections are getting stretched and folded, which indicates
that the stretch-and-fold mechanism is detected.
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Figure 5: Entropy change of the Lorenz plot section of the
Rössler attractor. The Lorenz plot section method is ap-
plied to all variables of the Rössler equations described in
Eq.(1): x(red), y(blue) and z(green). The average values
Have of the entropy H of the sections are plotted with con-
ducting 1, 000 trials. The number of sections is 192 and
l = 50.

Table 1: Correlation coefficients of entropy of the Poincaré
section method and the Lorenz plot section method applied
to the same Rössler attractor.

variables x y z
correlation coefficients 0.687 0.904 0.837

Figure 5 shows how the entropy Have changes when the
Lorenz plot section method is applied to each variable of
the Rössler equations. We can see the entropy gradually
getting higher, and then lower, which shows the same char-
acteristic as the entropy change of the Poincaré section.
Next, to evaluate the performance of the Lorenz plot sec-
tion method more precisely, we examined how much the
entropy change of the Lorenz plot section method differ
from that of the Poincaré section method applied to the
same attractor by using correlation coefficients. The re-
sults are summarized in Table 1. From Table 1, the Lorenz
plot section method applied to all variables showed a rel-
atively high correlation, especially y as 0.904. Therefore,
we can say that the Lorenz plot section method can detect
the stretch-and-fold mechanism as clearly as the Poincaré
section method.

We also examined if the Lorenz plot section method can
detect the stretch-and-fold mechanism in high-dimensional
attractor. We used a hyperchaotic Rössler system[7]. The

equations are described by:
ẋ = −y − z,
ẏ = x + 0.25y + w,
ż = 3 + xz,
ẇ = −0.5z + 0.05w.

(4)

The results of applying the Lorenz plot section method ap-
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Figure 6: Entropy change of the Lorenz plot section ap-
plied to the variable y of the Rössler hyperchaotic sys-
tem(Eq.(4)).

plied to the variable y of the hyperchaotic Rössler system
are shown in Fig.6. From Fig.6, we can see the entropy
gradually getting higher, and then, lower. This characteris-
tic is the same as the entropy change of the Poincaré section
of the three-dimensional Rössler equation, and this result
indicates that the stretch-and-fold mechanism of the high-
dimensional system can also be detected.
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(b) y
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Figure 7: Entropy change of the Lorenz plot section
method applied to all variables of the Rössler equations
embedded in a three-dimensional state space. The average
values Have of the entropy H of all sections are plotted with
1, 000 trials. The number of sections is 192 and l = 50.
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(b) y
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Figure 8: Entropy change of the Lorenz plot section
method applied to all variables of the Lorenz equa-
tions(Eq.(5)) embedded in a three-dimensional state space.
The average values Have of the entropy H of all sections
are plotted with 1, 000 trials. The number of sections is
192 and l = 50.

Next we will show the results of the Lorenz plot section
method applied to an observed single variable time-series.
Figures 7 and 8 show how the entropy Have change in case
that the Lorenz plot section method is applied to all vari-
ables of the Rössler equations and the Lorenz equations[3]:

ẋ = −10(x − y),
ẏ = −xz + 28x − y,
ż = xy − 8

3 z.
(5)

We reconstructed attractors in a three-dimensional state
space for both cases. Qualitatively compared to the entropy
change of the Poincaré section and the Lorenz plot section
of the Rössler attractor, we can see the same characteristic
of the entropy change.

5. Conclusions

We evaluated the performance of the Lorenz plot sec-
tion method by calculating entropy of the points plotted on
the sections. The results show that the Lorenz plot sec-
tion method can assign sections semi-automatically on at-
tractors and detect the stretch-and-fold mechanism clearly
enough as compared to the Poincaré section method. More-
over, by using the entropy, the Lorenz plot section method
can detect the stretch-and-fold mechanism of a high-
dimensional chaotic dynamical system such as the hyper-
chaotic Rössler system. We also applied the method to re-
constructed attractors from a chaotic time-series.

Although the proposed method show high quality, we
have to show that our method can distinguish the entropy
change of the chaotic dynamics from other dynamics, such

as torus and noisy-periodic dynamics. It is also one of the
important future works to apply the proposed method to
real time series to identify the stretch-and-fold mechanism
in the real world.
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