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Abstract—A particle swarm optimization (PSO) is an
algorithm that the particle which has the information of its
position and velocity searches for the solution in swarm.
Especially, based on the numerical simulation results,
changing the particle’s velocity in the search process influ-
ences searching ability of the solution. We pay attention to
the velocity of each particle in order to improve the search-
ing ability. Then, particles with good evaluation value are
chosen stochastically, and the method to search the best so-
lution by using the position of the particle is proposed.

1. Introduction

Searching for an optimal value of a given evaluation
function is very important. In order to solve such opti-
mization problems speedily, various meta-heuristics opti-
mization algorithms have been proposed. Particle swarm
optimization (PSO), which was originally proposed by
J. Kennedy and R. Eberhart[1][2], is one of such meta-
heuristics algorithms. The PSO algorithm is useful tool for
optimization problems[3]-[5].

The original PSO is described as

vt+1
i = wvt

i + c1r1(pbestt
i − xt

i) + c2r2(gbestt − xt
i) (1)

xt+1
i = xt

i + vt+1
i (2)

where w ≥ 0 is an inertia weight coefficient, c1 ≥ 0 and
c2 ≥ 0 are acceleration coefficients, and r1 ∈ [0, 1]N and
r2 ∈ [0, 1]N are two separately generated uniformly dis-
tributed random number vectors. xt

i ∈ RN denotes the po-
sition vector of the i-th particle on the t-th iteration in the
N-dimensional parameter space, and vt

i ∈ RN denotes the
velocity of the i-th particle on the t-th iteration. pbestt

i rep-
resents the position that gives the best value of the eval-
uation function of the i-th particle until the t-th iteration.
gbest is the position that gives the best value of the evalu-
ation function until the t-th iteration in the swarm.

The conventional PSO has quick convergence property.
This characteristic serves as hindrance to search the solu-
tion in multi-modal function with local optima. Paying at-
tention to convergence of particles, some techniques to im-
prove performance of searching the solution are also pro-
posed. The reason why the convergence speed is quick is
that all particles to refer to gbest. Then, particles with
good evaluation value are chosen stochastically, and the
method to search the best solution by using the position
of the particle is proposed.

2. PSO using Gradient

We define a pseudo gradient to update the particle posi-
tion as the following.

gt
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f (xt
k) − f (xt

i)
xt

k − xt
i

(3)

at
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{
1 (gt

ik > 0)
0 (gt

ik ≤ 0) (4)

f (x) expresses the evaluation value of each particle. The
probability which chooses a certain particle i as an element
of a next searching vector is determined by the following
equation.

pt
i =

∑K
k=0 at

ik

(K2 − K)/2
(5)

K expresses the population size of particles. The position
of the particles is selected by the probability p is set to xp.
xp is added to gbest of Eq. (1).

vt+1
i = wvt

i + c1r1(pbestt
i − xt

i) + αc2r2(gbestt − xt
i)

+(1 − α)c2r3(xt
p − xt

i) (6)

The dynamics of the proposed method is described in
Eq. (6). The parameter α means the mixture ratio between
the global best position gbest and the stochastic calculated
xp position. When the α is 1, the dynamics of the system is
equivalent to the conventional PSO.

3. Numerical Simulations

In order to confirm the performance of the proposed
method, we compare with the conventional PSO. We carry
out 50 times trials. The parameter of PSO are set to
w = 0.729 and c1 = c2 = 1.494.

3.1. Benchmark Function

The numerical simulations are carried out by using four
standard benchmark functions as shown in TABLE 1.
Sphere and Rosenbrock functions are uni-modal functions.
Rastrigin and Griewank functions are multi-modal func-
tions. Excepting Rosenbrock function, the optimum value
of each function is 0. The optimum value of Rosenbrock
function is 0 and the corresponding optimum solution is
xd = 1.
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Table 1: Benchmark Function

Function Optimum value

Sphere function f1(x) =
N∑

d=1

x2
d f1(0, 0, 0, . . . , 0) = 0

Rosenbrock function f2(x) =
N−1∑
d=1

(100(xd+1 − x2
d)2 + (xd − 1)2) f3(1, 1, 1, . . . , 1) = 0

Rastrigin function f3(x) = 10N +
N∑

d=1

((xd)2 − 10 cos(2πxd)) f3(0, 0, 0, . . . , 0) = 0

Griewank function f4(x) = 1 +
1

4000

N∑
d=1

x2
d −

N∏
d=1

cos
(

xd√
d

)
f4(0, 0, 0, . . . , 0) = 0

Table 2: Function Parameter for the Benchmarks

Function Search Range vmax Initial Range
f1(x) (−100, 100) 100 (50, 100)N

f2(x) (−100, 100) 100 (50, 100)N

f3(x) (−10, 10) 10 (2.56, 5.12)N

f4(x) (−600, 600) 600 (300, 600)N

The parameters; searching range, initializing range, and
vmax are set as shown in TABLE 2 for each benchmark
function. vmax is a divergent control parameter. The upper
bound is given at each particle velocity which is calculated
in Eqs. (1) and (6). Initializing range is determined as an
asymmetric range in the searching range. This operation
provides the biased initial values.

3.2. Influence of Parameter α

We confirm an influence to solution search performance
of the mixture parameter α. Figures 1 and 2 show the char-
acteristic of the search performance. The horizontal axis
denotes the parameter α, and the vertical axis denotes the
average evaluation value. These results indicate that the
parameter α improves the performance around α = 0.5.

3.3. Results

The numerical simulation results are shown in Fig. 3.
The horizontal axis denotes iteration and the vertical axis
denotes average evaluation value.

In the cases of Rastrigin function and Griewank func-
tion, the solution search performance is improved. Namely,
the proposed procedure improves the search performance
of multi-modal functions. On the other hand, the solution
search performance dose not improve in Sphere function
and Rosenbrock function. Moreover, also in which bench-
mark functions, the convergence is slow as compared with
the conventional PSO.

Figures 4 and 5 show the examples of the decay of the
particle velocity. In these cases, we apply Rastrigin func-
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Figure 4: Velocity of a particle in a certain dimension for
the conventional PSO (Rastrigin function)

tion as the benchmark function. These figures indicate that
the proposed procedure keeps the particle velocity compar-
ing with the conventional PSO procedure. From these re-
sults, when each particle refers to each target position, the
convergence can be delayed.

4. Conclusions

In order to prevent too early converging property of
the particle of the PSO, we proposed the novel procedure
which refers the pseudo gradient of the evaluation value.
We confirmed the performance is depended on the param-
eter α by numerical simulations. Also, we confirmed the
proposed procedure keeps the particle velocity comparing
with the conventional PSO procedure. Based on these
properties, the proposed procedure exhibits an excellent
performance for multi-modal function. However the sys-
tem dose not search local. To overcome these points is our
future problems.
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(a) Sphere function
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(b) Rosenbrock function
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(c) Rastrigin function
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(d) Griewank function

Figure 1: Influence of parameter α to solution search performance
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Figure 5: Velocity of a particle in proposed method (Rast-
rigin function)
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(a) Sphere
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(b) Rosenbrock
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(c) Rastrigin
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(d) Griewank

Figure 2: Influence of parameter α
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(a) Sphere (α = 0.5)
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(b) Rosenbrock (α = 0.5)
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(c) Rastrigin (α = 0.5)
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(d) Griewank (α = 0.6)

Figure 3: Simulation results
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