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Abstract—Particle swarm optimization (PSO) and dif-
ferential evolution (DE) are the evolutionary algorithms,
and both have been successfully applied to various opti-
mization problems. In this paper, we propose a hybrid al-
gorithm based on PSO and DE. The design of the proposed
method is mainly constructed from the algorithm of PSO,
and DE operator is used supplementarily. In order to pre-
serve diversity of population and have a rotation-invariant,
we modify velocity update equation and add perturbation
by difference vector. In addition, we introduce the uneven
movement of particles, by updating position of some par-
ticles in the swarm. The proposed method was compared
with basic PSO and DE. The simulation results showed the
effectiveness of the proposed method on several test func-
tions.

1. Introduction

Evolutionary algorithms (EA), which include popula-
tion based stochastic search and optimization algorithms,
are based on the natural evolution principles. As a typi-
cal EA, Genetic algorithm (GA), Particle swarm optimiza-
tion (PSO) and Differential evolution (DE) are have been
successfully applied to various problems including test and
real world problems. PSO is based on a social behavior of
bird flocking or fish schooling. The population is called a
swarm and the individuals are called particles. Each parti-
cle represents a potential solution to the problem expressed
by the objective function. DE was proposed for optimiza-
tion with continuous variables. The structure of DE is sim-
ilar to GA. As a genetic operator, mutation and crossover
are used to generate new candidate solution. In mutation,
distance and direction information from the current popu-
lation is used. DE and PSO have been successfully applied
to various problems including test and real world problems.

However, like most other stochastic optimization tech-
niques DE and standard PSO often confront premature con-
vergence and converge into a local minimum in multimodal
function. In addition DE’s crossover operation (binomial
and exponential crossover) is not a rotation-invariant [7].
Rotation does not alter the objective function topology,
however, the parameter becomes dependent. Thus, de-
pendance between parameters caused by rotation degrades
the performance of DE. In order to improve the perfor-

mance of these algorithms, many version of DE and PSO
have been developed. Among these improved methods, hy-
brids between PSO and DE have been showed better per-
formance. These methods combine the advantages of the
two approaches. DE and PSO’s hybrid algorithm could be
classified into two categories. The one is utilizing DE to
improve PSO [3, 4]. the other is utilizing PSO to improve
DE [5].

In this paper, we propose a hybrid algorithm of DE and
PSO. Our proposed algorithm is based on PSO, and DE op-
erator is used supplementarily to enhance the performance
of PSO. The proposed method emphasizes an ability of
global search and a rotation invariant. Due to this, veloc-
ity update equation is modified and perturbation by differ-
ence vector is added. In addition, we introduce the un-
even movement of particles by updating position of a part
of particles. As a result, the distribution of particles become
spread and diversity of swarm is preserved.

2. Particle swarm optimization

In the PSO algorithm, each particle has two informa-
tion; position and velocity. Algorithm 1 shows pseu-
docode of PSO. ForND-dimensional search space, the po-
sition and velocity for thei-th particle is represented as
xi = [xi1, xi2, · · · , xiND ] andvi = [vi1, vi2, · · · , viND ], respec-
tively. The best previous position of thei-th particle is
recorded and presented aspi = [pi1, pi2, · · · , piND ] which
is also called pbest. The index of the best pbest is repre-
sented by the symbolg, andpg is called gbest.

At k iteration step, the velocity and position update equa-
tions for thej-th dimension of thei-th particle in the swarm
are given as follows:

vk+1
i j = wvk

i j + c1rand1(pi j − xi j )

+ c2rand2(pg j − xi j ) (1)

xk+1
i j = xi j + vk+1

i j (2)

where,rand1 andrand2 are uniformly distributed numbers
between 0 and 1,c1 andc2 are positive constants referred to
as cognitive and social paramters respectively,w is called
inertia weight.
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Algorithm 1 PSO
Generate population and velocity{xi |i = 1,2, · · · ,NP},
{vi |i = 1,2, · · · ,NP}
for k = 1 to Kmax do

for i = 1 to NP do
Update the velocity ofvi by Eq. (1);
Update the position ofxi by Eq. (2);
Evaluatexi

/*Update pbest and gbest*/
if f (xi) < f (pi) then
pi = xi

if f (xi) < f (pg) then
g = i

end if
end if

end for
end for

3. Differential evolution

DE is a population-based stochastic search technique for
solving optimization problems in a continuous space. In
the DE algorithm, at the beginning all members of the pop-
ulation are initialized randomly. At each generation, new
candidate solutions are generated by genetic operator. For
each parent (target vector)xi , mutant vectorvi is generated
by the following equation:

vi = xr1,i + F(xr2,i − xr3,i) (3)

where,r1, r2, r3 are randomly chosen integers, must be dif-
ferent from each other and also different from the running
index i. F is the scaling factor which controls the mutation
step size. The scaling factor influences the perturbation ap-
plied to the base vectorxr1,i and has an important role in
ensuring the population diversity. Next, crossover opera-
tor combines component of target vector and mutant vec-
tor and generates trial vectorui . WhereCR ∈ [0,1] is an
input parameter influencing the number of elements to be
exchanged by crossover. In the selection for survival, the
objective function value ofxi with ui are compared and
better one is selected to next generation.

4. Proposed method

The proposed method as mentioned earlier is a hybrid al-
gorithm of DE and PSO. The construction of the proposed
method is based on PSO. The pseudo code of the proposed
method is shown in Algorithm 2. In order to preserve di-
versity of population of PSO, we add perturbation using
difference vector to velocity update equation. Addition-
ally, the uneven movement of particles is introduced. At
each iteration, moving particles, which are selected with a
probability of moving (pm), update velocity and position.

Remaining particles, called stopping particles, update only
their velocity. Due to this, the distribution of swarm be-
come uneven and swarm can avoid too fast convergence.

Algorithm 2 Proposed method
Generate population and velocity{xi |i = 1,2, · · · ,NP},
{vi |i = 1,2, · · · ,NP}
for k = 1 to Kmax do

for i = 1 to NP do
if pm > rand(0,1) then

Update the velocity ofvi using Eq. (5);
Update the position ofxi by Eq. (2);
Evaluatexi

/*Update pbest*/
if f (xi) < f (pi) then
pi = xi

end if

else
Update the velocity ofvi by Eq. (6);

end if
end for

end for

If particle i is selected as a moving particle, a difference
vectorδ is calculated as follow:

δ = pr1 − pr2 (4)

where,r1 andr2 are selected randomly in a similar way of
DE. Next, the velocity for thej-th dimension of thei-th
particle is updated as follow:

vk+1
i j = wvk

i j + c1(pi j − xi j )

+ c2(pt j − xi j ) + Fδ j (5)

where,t ∈ {1,2, · · · ,NP} is selected by tournament selec-
tion. Basic PSO uses gbest in third term, however, we con-
sider that usage of gbest becomes a cause of too fast con-
vergence. Therefore, by selecting the particle of the third
term using tournament selection, the convergence speed of
particles toward the best solution is reduced. Additionally,
different from equation (1),rand1 andrand2 are not used.
Instead, the difference vector is added as the fourth term in
order to perturb velocity of particles.

Stopping particles update only velocity by following
equation:

vk+1
i j = wacv

k
i j (6)

where,wac(> 1) is a parameter for acceleration of velocity.
In the proposed method, by acceleration velocity of some
particles, distribution of particles is expanded and diversity
is preserved.
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Table 1: Definition of test functions

Name Expression Domain Structure

Sphere f (x) =
ND∑
i=1

x2
i [−5.12≤ xi ≤ 5.12]ND unimodal

k-tablet (k=ND/2) f (x) =
k∑

i=1

x2
i +

ND∑
i=k+1

(100xi)
2 [−5.12≤ xi ≤ 5.12]ND unimodal, ill-scale

Rastrigin f (x) = 10ND +

ND∑
i=1

x2
i − 10cos(2πxi) [−5.12≤ xi ≤ 5.12]ND strongly multimodal

Rosenbrock f (x) =
ND∑
i=2

{100(x1 − x2
i )2 + (xi − 1)2} [−2.048≤ xi ≤ 2.048]ND nonlinear ridge　

Schaffer f (x) =
ND−1∑
i=1

(x2
i + x2

i+1)0.25 × (sin2(50(x2
i + x2

i+1 + 1.0))0.1) [−5.12≤ xi ≤ 5.12]ND strongly multimodal

Griewank f (x) = 1+
ND∑
i=1

x2
i

4000
−

ND∏
i=1

(
cos
( xi√

i

))
[−512≤ xi ≤ 512]ND strongly multimodal

5. Experiment

5.1. Setup

In order to confirm the performance of the proposed
method, we compare the proposed method, PSO and DE
on standard test functions with the number of dimensions
ND= 20. Table 1 shows a list of test functions. All functions
are chosen for the minimization problems and their optimal
values are all 0. Table 2 shows control parameters of the
proposed method, PSO and DE. In the proposed method,
the parameters are detenumined by preliminary experiment
and the tournament size is 2. The parameter setting of PSO
is based on [6] and DE strategy is DE/rand/1/exp. In order
to validate the effectiveness ofCR and pm, several value
was used.CR was viried across the set{0.7,0.9,0.95} and
pm was varied across the set{0.60,0.65}.

Table 2: Control parameters
NP c1 c2 w wac F

Proposed 500 0.25 0.5 0.4 1.8 0.3
method
PSO 50 1.4955 1.4955 0.729
DE 50 0.7

Each experiment for the function is carried out 50 times.
When the best fitness of the population has become less
than 10−7, we assume that an optimal solution has been
found. The termination criteria is 5×107 fitness evaluations
in all functions.

5.2. Result

Table 3 shows the experimental results of proposed
method, PSO and DE on some standard test functions. The
top row shows the number of function evaluations until
finding a near optimal value. The bottom row shows the
number of runs (out of 50) that found the optimal solution.
In this table, RT means 30 degree coordinate rotation.

PSO tends to converge into a local minimum, and failed
to find the optimal solution except of sphere function and
k-tablet function. DE is faster than other algorithms in mul-
timodal functions. However, in whicheverCR, DE can not
success completely in all trials. In rotate functions, the
convergence speed and the success rate of DE degrade be-
cause crossover is not a rotation-invariant [7]. WhenCR is a
high value, population tend to move at angles to the search
space’s axes. Therefore, it is effective for problems which
have dependency problem between the variables. Mean-
while, a higherCR reduces population diversity rapidly and
DE tend to get stuck in local minimum. Due to this, ade-
quate setting ofCR is difficult in DE.

The proposed method usingpm=0.60 finds optimal so-
lutions completely in all functions. Additionally, we con-
firm that in all rotated functions the convergence speeds are
not degrade campared to not rotated functions. However,
the convergence speed of proposed method is slow because
many particles are required for stable convergence. When
pm is 0.65, the convergence speed become faster in all func-
tions. Especially, in the Rosenbrock function, the Schaffer
(RT) function and the Griewank (RT), the proposed method
is faster than other methods. In contrast, the population di-
versity decreases and several trials failed in the Rastrigin
function. From these results, a certain number of stopping
particles are required in order to stable convergence.
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Table 3: Comparison of the proposed method, PSO and DE
Proposed method PSO DE

pm=0.60 pm=0.65 CR=0.7 CR=0.9 CR=0.95
Sphere 9.13E+04 6.66E+04 1.32E+04 3.07E+04 4.00E+04 5.10E+04

(50/50) (50/50) (50/50) (50/50) (50/50) (50/50)
k-tablet 1.30E+05 8.05E+04 2.02E+04 3.94E+04 4.90E+04 6.11E+04

(50/50) (50/50) (50/50) (50/50) (50/50) (50/50)
Rastrigin 1.11E+07 4.17E+06 5.89E+04 1.10E+05 1.80E+05

(50/50) (48/50) (0/50) (50/50) (50/50) (50/50)
Rastrigin (RT) 9.39E+06 4.03E+06 1.42E+06 4.60E+05 9.80E+03

(50/50) (48/50) (0/50) (49/50) (50/50) (20/50)
Rosenbrcok 1.66E+05 1.39E+05 1.41E+06 2.70E+05 1.70E+05

(50/50) (50/50) (0/50) (50/50) (50/50) (50/50)
Schaffer 4.79E+05 3.37E+05 1.30E+05 1.77E+05 2.45E+05

(50/50) (50/50) (0/50) (50/50) (50/50) (50/50)
Schaffer (RT) 4.79E+05 3.37E+05 9.12E+06 6.65E+05 5.37E+05

(50/50) (50/50) (0/50) (0/50) (50/50) (48/50)
Griewank 1.30E+05 9.42E+04 5.47E+04 6.45E+04 8.09E+04

(50/50) (50/50) (0/50) (50/50) (49/50) (47/50)
Griewank (RT) 1.30E+05 9.33E+04 1.28E+06 1.28E+05 1.17E+05

(50/50) (50/50) (0/50) (49/50) (43/50) (33/50)

6. Conclusion

PSO and DE, which belong to Evolutionary algorithms,
have been successfully applied to various problems. In
this paper, a hybrid method of PSO and DE is proposed
for global optimization problems. The basic structure of
the proposed method is PSO and mutation operator of DE
is used as a supplementary. To enhance the diversity of
swarm and avoid premature convergence, we modified ve-
locity update equation and introduced uneveness by mov-
ing particles and stopping particles. Through simulation
results using several test functions, we confirmed that the
proposed method is not affected by the rotation which de-
grades performance of DE. The proposed method found
optimal solutions in all test functions, however the conver-
gence speed was slower than basic DE. In the future work,
the reduction of population and adaptive control of param-
eters are required in order to reduce function evaluations
and improve stability of convergence.
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