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Abstract 
 
A band diagram is the fundamental for investigation of the electromagnetic properties of periodic 
structures such as photonic crystals in optics or electromagnetic band gap structures in antenna 
engineering. In this paper, the two famous computational methods, finite difference frequency domain 
(FDFD) and finite difference time domain (FDTD) methods are applied for band diagram calculation 
of 2-D photonic crystals. Both of the methods are compared due to computational time and accuracy. 
Furthermore the loss effects on propagation modes of periodic structures have been investigated and 
the relationship between normalized frequency and changing the loss of the periodic structures has 
been found.  
 
1. Introduction 

 
In recent years, there has been a growing research activities related to the development of new 
artificial materials whose characteristics are useful for many disciplines such as optics, microwave 
engineering, antenna engineering, and electromagnetic compatibility. These materials are often called 
Metamaterials or particularly referred as photonic crystals [2, 4, 5] in optics, electromagnetic band gap 
(EBG) structures [1,3] in microwave and antenna engineering, and so forth. These materials are 
fabricated by periodic structures. In the development of these materials, it is necessary to know that 
how the wave behaves in these materials. The wave behavior is expressed by   diagram, where  
is wave number and  is angular frequency. Therefore, the  diagram is important to understand 
the properties of periodic structures.      
     Numerical analysis is important in the design and applications of artificial materials. A variety of 
numerical methods have been utilized to calculate the propagation characteristics of 2-D periodic 
structures. The conventional plane wave expansion (PWE) method [4], although commonly employed 
in periodic structures research, suffers from slow convergence of the Fourier transform of the dielectric 
function. The finite element method (FEM) [6] is also a famous method in waveguide mode analysis 
with outstanding flexibility and accuracy, but its formulation is more difficult than the finite difference 
method (FDM) [7] and requires huge computer resources owing to its inherent methodology. On the 
other hand, the FDTD [8~10] and FDFD [13,14] methods have high capability of modeling the 
periodic structures. With concerning of these facts, FDFD and FDTD have been applied for periodic 
structures analysis including electromagnetic scattering and propagation modes analysis [5,11].  
     In the first half of this paper, FDFD and FDTD methods are applied for calculation of propagation 
modes in EBG structure as shown in Fig. 1. Both of the methods are compared due to calculation time 
and accuracy. In the last half of this paper, loss effects on propagation modes are investigated, because 
almost all of the materials have losses, so the loss effects are important for fabrication. 
 
2. Formulation 

 
FDTD and FDFD methods have high capability of electromagnetic calculation and propagation modes 
detection. FDTD and FDFD are applied for, TM case, mode propagation of the geometry shown in 
Fig.1. This figure shows a cross section of two-dimensional periodic structure in which the object is 
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3. Numerical Results 
 

      3.1 Comparison of FDFD and FDTD for Band Diagram Calculation  
Fig. 2 shows the band diagram for the first 4 propagation modes calculated by the FDFD and FDTD 
methods when the object of the Fig. 1 is composed of dielectric cylinders with relative permittivity and 
radius of 8.9 and 0.2  respectively, where the computation region is 20 20  cells. Both of the 
methods indicate almost the same results, however FDTD disagree with FDFD when two modes 
degenerate. This is caused by the difference of the eigenvalue calculation and the peak search. We can 
identify and obtain multiple roots of the characteristic equation of the eigenvlaue problem in FDFD 
even if they are very close to each other, however in FDTD, there is only one peak appears in the 
Fourier spectrum when the modes are very close to each other or degenerating. Therefore, the higher 
eigenfrequency is recognized as the one belonging to the lower mode as shown at the point M in Fig. 2 
and Fig. 3. For higher modes shown in Fig. 3, although the FDFD method seems to have no problem 
basically, however, the relatively large disagreement is observed as the modes become higher. This is 
for the reason that the sequential two modes reset in very close eigenfrewquencies, and these peaks 
given by the FDTD calculation are also very close to each other. Therefore, the positions of these 
peaks cannot be distinguished well depending on the resolution of the numerical Fourier 
transformation. 
     The calculation time required in above calculation is shown in Fig. 4. This time is normalized by 
that for the case of 400 cells (NX NY 20 . It is found that the FDTD method requires shorter time 
than the FDFD method. It is also cleared that IRA method is effective for reducing the computational 
time than QR method in FDFD. Therefore the FDTD method is useful for reducing the computation 
time required for modes calculation; however the FDFD method should be sued when we need the 
accurate results especially for higher modes.        

    
                                                                                                                                                        
 
 
      3.2  Loss Effects on Propagation Modes 
Considering the periodic cylinders of Fig. 1 as lossy cylinders. The relative permittivity of the lossy 
periodic structure is  
 

       1 ⁄                                                                                             (6)    
 

Where  is real part and is the imaginary part of the complex relative permittivity. The value of  
 is 8.9 and  ⁄  is changing here for investigating the loss effects of the material. Fig. 5 shows the 

band diagram of the first propagation mode in irreducible Brillouin zone. The results by FDFD and 
FDTD show that at every point of irreducible Brillouin zone, when  ⁄  increases the normalized 
frequency decreases. 
     Fig. 6 shows the relationship between the normalized imaginary part of the frequency and  ⁄ . 
From Fig. 6, it can be seen that when ⁄  approaches to 1, the normalized imaginary part of 
frequency also increases but when ⁄ increases further then the normalized imaginary part of the 

Fig. 3. Band diagram for first 8 to 11 
Propagation modes 

Fig. 4.  Calculation Time of FDFD and FDTD  
methods 
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