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Abstract

A band diagram is the fundamental for investigation of the electromagnetic properties of periodic
structures such as photonic crystals in optics or electromagnetic band gap structures in antenna
engineering. In this paper, the two famous computational methods, finite difference frequency domain
(FDFD) and finite difference time domain (FDTD) methods are applied for band diagram calculation
of 2-D photonic crystals. Both of the methods are compared due to computational time and accuracy.
Furthermore the loss effects on propagation modes of periodic structures have been investigated and
the relationship between normalized frequency and changing the loss of the periodic structures has
been found.

1. Introduction

In recent years, there has been a growing research activities related to the development of new
artificial materials whose characteristics are useful for many disciplines such as optics, microwave
engineering, antenna engineering, and electromagnetic compatibility. These materials are often called
Metamaterials or particularly referred as photonic crystals [2, 4, 5] in optics, electromagnetic band gap
(EBG) structures [1,3] in microwave and antenna engineering, and so forth. These materials are
fabricated by periodic structures. In the development of these materials, it is necessary to know that
how the wave behaves in these materials. The wave behavior is expressed by k — w diagram, where k
is wave number and w is angular frequency. Therefore, the k — w diagram is important to understand
the properties of periodic structures.

Numerical analysis is important in the design and applications of artificial materials. A variety of
numerical methods have been utilized to calculate the propagation characteristics of 2-D periodic
structures. The conventional plane wave expansion (PWE) method [4], although commonly employed
in periodic structures research, suffers from slow convergence of the Fourier transform of the dielectric
function. The finite element method (FEM) [6] is also a famous method in waveguide mode analysis
with outstanding flexibility and accuracy, but its formulation is more difficult than the finite difference
method (FDM) [7] and requires huge computer resources owing to its inherent methodology. On the
other hand, the FDTD [8~10] and FDFD [13,14] methods have high capability of modeling the
periodic structures. With concerning of these facts, FDFD and FDTD have been applied for periodic
structures analysis including electromagnetic scattering and propagation modes analysis [5,11].

In the first half of this paper, FDFD and FDTD methods are applied for calculation of propagation
modes in EBG structure as shown in Fig. 1. Both of the methods are compared due to calculation time
and accuracy. In the last half of this paper, loss effects on propagation modes are investigated, because
almost all of the materials have losses, so the loss effects are important for fabrication.

2. Formulation

FDTD and FDFD methods have high capability of electromagnetic calculation and propagation modes
detection. FDTD and FDFD are applied for, TM case, mode propagation of the geometry shown in
Fig.1. This figure shows a cross section of two-dimensional periodic structure in which the object is



placed in x-y plan and the unit cell is illustrated by dashed lines, where r is the radius of the rods and a
is the periodic length. Here FDFD and FDTD methods are briefly summarized as follow.

2.1 FDFD and FDTD methods
FDFD Maxwell’s equations are as follow.
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After applying the central difference scheme, the term can be arranged in the following matrix
equation.
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After some algebraic arrangements, we have
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Where Vy,Vy,Uy, and Uy are space differential operators [S] along x and y directions. Since eq.(3)
is an eigenvalue problem, the QR method or the Implicitly Restarted Arnoldi (IRA) method [12]
can be successfully applied to obtain the eigenvlaues.

In the FDTD calculation the field equations are solved intime domain under the periodic
boundary condition. After that the fields are converted through Fourier transform to frequency domain,
and then the band diagram is obtained by searching the peaks of the Fourier spectrum for the specific
wave numbers K, and K,, . The accuracy depends heavily on the resolution of the peak search.

2.2 Periodic Boundary Condition
Due to the periodic geometry, the field distribution in a periodic structure should satisfy the Bloch
theorem. Bloch conditions for periodic structure are as

H(r+T) = e /*TH(r) (4a) ; E@+T) =e/*TE(r) (4b)

where T is the lattice vector of the periodic structure. Therefore, in the analysis of periodic structure,
we only need to consider the unit cell for our calculation along with the periodic boundary condition
(PBC) [5, 15] resulting from the Bloch conditions. For the periodic structure with square lattice as
shown in Fig. 1, the PBC can be expressed as

Y +ay) =e’ = Px,y) (5a) 5 Ylhy+a)=e % Pxy) (5b)
Where v is either the electric or magnetic field in the unit cell and k, and k,, are the wave numbers in
x and y directions respectively.
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3. Numerical Results

3.1 Comparison of FDFD and FDTD for Band Diagram Calculation

Fig. 2 shows the band diagram for the first 4 propagation modes calculated by the FDFD and FDTD
methods when the object of the Fig. 1 is composed of dielectric cylinders with relative permittivity and
radius of 8.9 and 0.2a respectively, where the computation region is 20 X 20 cells. Both of the
methods indicate almost the same results, however FDTD disagree with FDFD when two modes
degenerate. This is caused by the difference of the eigenvalue calculation and the peak search. We can
identify and obtain multiple roots of the characteristic equation of the eigenvlaue problem in FDFD
even if they are very close to each other, however in FDTD, there is only one peak appears in the
Fourier spectrum when the modes are very close to each other or degenerating. Therefore, the higher
eigenfrequency is recognized as the one belonging to the lower mode as shown at the point M in Fig. 2
and Fig. 3. For higher modes shown in Fig. 3, although the FDFD method seems to have no problem
basically, however, the relatively large disagreement is observed as the modes become higher. This is
for the reason that the sequential two modes reset in very close eigenfrewquencies, and these peaks
given by the FDTD calculation are also very close to each other. Therefore, the positions of these
peaks cannot be distinguished well depending on the resolution of the numerical Fourier
transformation.

The calculation time required in above calculation is shown in Fig. 4. This time is normalized by
that for the case of 400 cells (NX = NY = 20). It is found that the FDTD method requires shorter time
than the FDFD method. It is also cleared that IRA method is effective for reducing the computational
time than QR method in FDFD. Therefore the FDTD method is useful for reducing the computation
time required for modes calculation; however the FDFD method should be sued when we need the
accurate results especially for higher modes.
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3.2 Loss Effects on Propagation Modes
Considering the periodic cylinders of Fig. 1 as lossy cylinders. The relative permittivity of the lossy
periodic structure is

& =¢ —je" =¢'(1—je"/e") (©)

Where €’ is real part and €''is the imaginary part of the complex relative permittivity. The value of
€' is 8.9 and &'/’ is changing here for investigating the loss effects of the material. Fig. 5 shows the
band diagram of the first propagation mode in irreducible Brillouin zone. The results by FDFD and
FDTD show that at every point of irreducible Brillouin zone, when €'’ /&’ increases the normalized
frequency decreases.

Fig. 6 shows the relationship between the normalized imaginary part of the frequency and &'’ /¢’.
From Fig. 6, it can be seen that when &'’ /¢’ approaches to 1, the normalized imaginary part of
frequency also increases but when &'’ /¢'increases further then the normalized imaginary part of the



frequency decreases. Fig. 6 shows the normalized imaginary part of the frequency of the first eight
propagation modes for K, = /3 and K,, = 0 in irreducible Brillouin zone.
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4. Conclusion

This paper studied the computer resources and the accuracy for calculation of the band diagram of
periodic structure using the FDFD and FDTD methods. As computation time is concerned, the FDTD
method has a clear advantage over the FDFD method. However, the FDTD method issues unexpected
values when two modes have very close characteristics. For high accuracy, especially for higher
modes, the FDFD method should be used because the FDTD method has error in the resolution of
peak search when the modes are very close to each other.

This paper also investigated the loss effects on propagation modes. It has been found that the
normalized frequency decreases with increasing of &'/e’ of the relative permittivity. It is also
investigated that the normalized imaginary part of the frequency increases when €'’ /¢’ increases from
0 to 1, however, when this value increases further then the normalized imaginary part of the frequency
decreases instead of increasing.
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