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Abstract—Since A. M. Turing introduced a notion
of computability, various types of real number compu-
tation theory has been studied for past 80 years [1-6].
Some of them are of interest in nonlinear and statisti-
cal physics, and others are as extensions of mathemat-
ical theory of computation. In this review paper, we
introduce recently developed computability theory of
Julia sets in the framework of M. Braverman and M.
Yampolsky [7], and give remarks and future works.

1. Introduction

Chaos and fractals have been studied from a view-
point of computability in physical systems [4][3][6].
They are commonly based on their nature of complex-
ity arising from iteration of simple rules. In this review
paper, we introduce recently developed computability
theory of Julia sets in the framework of M. Braverman
and M. Yampolsky [7], and give remarks and future
works in terms of computational complexity.

1.1. Classical definitions of computation

In this subsection, we show classical definitions of com-
putable real numbers introduced by A. M. Turing [1]
and computable real functions introduced by M. Pour-
El [2].

Turing computability is a fundamental concept of
computation [1]. It is defined by rather a physical au-
tomaton model, called Turing machine.

Def.1.1.1(Computability)
A function f(x) is computable if there is a Turing ma-
chine M such that M takes x as an input and outputs

f(z).

We say that the number of steps M (w) the Turing
machine M makes before terminating with an input w
is the running time. This is a basis of computational
complexity theory.

Def.1.1.2(Time complexity)
For a Turing machine M on input w, the time com-
plexity of M is the function Ty : N — N such that

Ty (n) = max {the running time of M(w)}.

lw|=n

A definition of computable real numbers is given by
Turing.

Def.1.1.3(Computable real number)
A real number « is said to be computable if there is a
computable function f: N — Q such that

o — f(n)] < 27" (Vn € N).

It is known that most real numbers are uncomputable.
Examples of computable real number are e, 7, and v/2.

Later, a definition of computable real function is in-
troduced by M. Pour-El in a context of computable
analysis and constructive mathematics [2].

Def.1.1.4(Computable real function)

Let 19 = {a; < x; <b;,1 <i<q} CRY, where a; and
b; are computable reals, be a computable rectangle. A
real function f: I?7 — RY is said to be computable if
(i) [ is sequentially computable, i.e. [ maps every
computable sequence of points xp € I? into a com-
putable sequence {f(xx)} of real numbers.

(i) f is effectively uniformly continuous, i.e. there is
a computable function d : N — N such that for all
x,y € I? and all N:

|2 =yl < gy implies | f(x) = f(y)] <277,

where | - | denotes Euclidean norm.

It is known that solutions of PDE described with com-
putable real function may be uncomputable. Exam-
ples of such PDE is given by a class of wave equation.

1.2. Julia sets

In this subsection, we define Julia set in complex dy-
namical systems [8]. We will denote n-th iterate of
mapping R by R™. To say simply, the Riemann sphere
is the union of complex plane and a point at infinity,
ie,C=CU {o0}. Let zp is a periodic point of period
n € N. Then the periodic orbit of zj is called attract-
ing or repelling if the derivative |[D"R(zp)| < 1 or > 1.



Def.1.2.1(Fatou set and Julia set)

Let R be a rational function of degree d > 2 on the
Riemann sphere C. The Fatou set is the set of points
which have an open neighborhood U(z) on which the
family of iterates R"\U(z) is equicontinuous. The Fa-
tou set is denoted by F(R). The open set J(R) =
C\ F(R) is called Julia set.

Def.1.2.2(Filled Julia set)
Let R be a rational function of degree d > 2. Then the
filled Julia set K(R) is defined as follows:

K(R)={z€ C’S?Ip|R”(z)| < 00}.

Intuitively, a filled Julia set is a set of points which
remain bounded under the iteration of R, and a Julia
set is boundary of a filled Julia set.

Let P.(2) = 22+ c and J. = J(P.) as a class of
Julia sets of polynomial with d = 2. For instance,when
¢ = 0, the origin and the point at infinity are attracting
points. Let z is in the interior of the unit disk U. Then
Pl'(z) — 0 as n — oo. So the family of iterates is
equicontinuous. By the same argument, in the case
that z € C \ U the family of iterates is equicontinuous.
But if z is on the unit circle, on the neighborhood of z
the family of iterates cannot be equicontinuous. Thus
the unit circle {z € C||z| = 1} is the Julia set of Py(z).
See examples of Figure 1.

Def.1.2.3(Mandelbrot set)

Let P.(z) = 22 + c¢. The Mandelbrot set M is the set
of parameters ¢ which the orbit of the origin remains
bounded.

Note that if ¢ € M then the Julia set is connected (is
not Cantor set).

2. Computability of Julia sets

In this section, we consider the computability and
complexity of Julia sets in the framework of M. Braver-
man and M. Yampolsky [7]. Let K be a compact sub-
set of R¥. 1In this framework, computable function
must be continuous, so the characteristic function of
S C RF, yg, is not computable unless S = () or R*
itself.

To study computability of Julia sets, a geometric in-
terpretation of Ko’s computability based on Hausdorff
metric is given by Braverman and Yampolsky.

2.1. Ko’s definitions of computable real func-
tion

We introduce a framework of computable real numbers
and functions by K. Ko [5]. A useful notion for com-
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Figure 1: Julia sets J. of P.(z) = 22 + ¢ with ¢ = 0
(top), ¢ = —1 (middle), and ¢ = —1.543689 (bottom).

putability of real number is a set of dyadic numbers D
which is defined by

k
D= {2l;kz eZ,le N}.
Now we define an oracle approximating a real number
with precision n in finite time steps.

Def.1.3.1(Oracle)
A function ¢ : N — D is called an oracle for x € R if
it satisfies |o(m) — x| < 27" (Vm).

Intuitively, oracle is a “equipped device” for comput-
ers and they cannot be described as an algorithm. We
will denote a Turing Machine with an oracle for a real
number x by M?. When we write M?(n), n represents
precision of approximation of x.

Def.1.3.2(Computability of function)

Let S CR andlet f : S — R. Then fis said to be com-
putable if there is an oracle Turing machine M®(n)
such that the following holds. If ¢(m) is an oracle for
x €S, then for allm € N, M?(n) returns g € D such
that |q — f(x)] < 27™.

Note that discontinuous functions cannot be com-
putable such as Heaviside functions with this defini-



tion.

Def.1.3.3(Polynomial time computability of real func-
tion)

Let S C R* and p be some polynomial. A func-
tion f : S — R is said to be polynomial time com-
putable if there is a machine M?® computing it such
that Tpr(n) < p(n).

Now we introduce Braverman-Yampolsky com-
putability. Intuitively, this is a computability concept
based on “drawing” a picture of K with round pixels
on the computer screen.

Def.2.1.1(Regular computability)
The set K C R¥ is computable if a Turing machine M
computing a function fx(d,r) from the family

1 if B(d,7) N K # 0
fr(d,r)=4 0 if B(d,2r)NK =0
0 or1 otherwise

exists.

A schematic view is given in Figure 2.

Figure 2: Schematic view of regular computability.

Def.2.1.2(Weak computability)
The set K C RF is weakly computable if there is
an oracle Turing Machine M®(n) such that, if ¢ =

(¢1, b2, ..., ¢r) represents x = (x1,x9,...,x) € RE,
then the outputs of M?(n) is

1 ifee K
M?n)=4 0 if Bz,2="")NnK =0

0 or1 otherwise.

A schematic view is in Figure 3. The value of M?(n)
is not 1 unless the center of pixel is contained in K.

We rewrite the definition of regular computability
to those for Julia sets.

Def.2.1.3(Regular computability of set-valued func-
tion)

o
ot} L

N
Figure 3: Schematic view of weak computability.

Let S C R¥, and F : S — K3 be a function which
maps a points in S to K3 which is compact subsets
of R?. Then F is said to be computable on S if there
is an oracle Turing machine M®v9%(d, r) which, for
the oracles representing a point x = (x1,...,2x) € S,
computes a function fe1-% : D2 x D — {0,1} from
the family

1 if Bld,m)NF(z)#0
for P (dr)y=¢ 0 if B(d,2r) N F(z) =0
0 or1 otherwise.

The definitions of “regular” and “weak” computability
are different from each other. However, they produce
same results in terms of computability. As for compu-
tational complexity, we can define time complexity as
following: The running time Ths(n) is the longest time
it takes to compute f?1-%*(d,r) where r = 27" and
d € (Z/2?"). In terms of computational complexity,
the definitions of regular and weak computability may
produce different results. When we adopt the regular
computability to consider our Julia set problems, then
the following theorems hold. [7].

A rational mapping R : C — C s called hyperbolic if
the orbit of every critical point of R is either periodic,
or converges to an (super-)attracting cycle.

Thm.2.1.4(Computability of hyperbolic Julia sets)
Fiz d > 2. There exists a Turing machine M® with
oracle access to the coefficients of a rational mapping
of degree d which computes the Julia sets of every hy-
perbolic rational map of degree d. Moreover, the Julia
sets can be computed in polynomial time.

Thm.2.1.5(Uncomputable Julia sets)

There exists computable values of the parameter c,
such that the Julia set J. is not computable by a Tur-
ing machine M? with oracle access to c.

A practical consequence of the existence of uncom-
putable Julia sets J. is that we will never see their
pictures on computer screen. On the other hand, in



the case of d = 2, Theorem2.1.4 and the hyperbolicity
conjecture, which states that hyperbolic parameters
are dense in the Mandelbrot set M, asserts most Julia
sets are computable.

The computability of filled Julia sets are simpler
than that of Julia set. We denote filed Julia set of
polynomial p by K.

Thm.2.1.6(Computability of filled Julia set)

For any polynomial p(z) there is an oracle Turing ma-
chine M®(n) that, given an oracle access to the coeffi-
cients of p(z), outputs 2~ "-approximation of the filled
Julia set K.

3. Future works

This research will be developed to analyze complex-
ity of computable Julia sets. Extending known results
for real dynamical systems in nonlinear and statisti-
cal physics may shed lights to complexity of nonlinear
phenomena. Applications to cryptographic systems
and formal language theory with this frameworks are
promising future works.
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