
Abstract—Large-scale web services are increasingly 
adopting the microservice architecture that mainly utilizes 
container technologies. Microservices are operated on complex 
configured infrastructures, such as containers, virtual 
machines, and physical machines. To ensure service quality of 
microservices, it is important to monitor not only the quality of 
services but also the quality of the infrastructures utilized by the 
services. Therefore, the metrics of the infrastructure related 
with the services should be traced. An extended Berkeley Packet 
Filter (eBPF) is a relatively new Linux’s function, which is 
effectively used as a sensor of container-network metrics. There 
are two key challenges in realizing the service-linked monitoring 
system. One challenge is making the full-stack topology between 
microservices, containers, and machines visible to set the sensor 
related with the services. Another challenge is dynamic sensor 
management that can relocate the sensor quickly after the 
topology’s change. In this paper, we propose a real-time 
monitoring system that creates a full-stack topology and 
relocates the sensor in conjunction with events from a container 
orchestrator. The system enables a dynamic deployment of the 
sensors related with the monitored services. 

Keywords—Microservice, Container, Kubernetes, eBPF, 
Network latency 

 

Fig. 1. Concept of our proposed monitoring system 
for a microservice-deployed infrastructure. 

Container

Pod

Microservice A

Container networks

Physical machine
Physical network

Microservice B

Service

Request

Response

VM

Virtual network

Sensor
Latency
Traffic
Loss



A. Full-stack topology between different layers 

B. Dynamic sensor deployment driven by a topology 
change 

Fig. 2. Overview of sensor deployment combined with 
the service. 

POD
Container

VNIC

VNIC

Monitored
service

Operating system
on a VM

eBPF
Send packet

A

Database

POD

VNIC

VNIC

Monitored
service

eBPF
Send packet

B

POD

VNIC

VNIC

Unmonitored
service

Packet data
for service A Packet data 

related with 
Service Agetting data

Container Container

Packet data
for service B



A. Topology analysis unit 

1) Extract relationships between services and pods and
the container’s name inside the pods from the kube-apiserver. 

2) Get a process IDs of the containers from Docker
apiserver in each VM and match the process IDs and the 
services. 

3) By utilizing the process ID, connect to the namespace
of the pods and investigate the VNICs (veth) to which the 
containers are connected. 

4) Login to the VMs and investigate container networks
to which the VNICs are connected. 

Fig. 3. Issue in metrics monitoring by the eBPF in the 
case of container movement. 

POD

VNIC

Service

VM A

eBPF

Send packet

VNIC

VM B

NIC

VM A

eBPF
NIC

VM B
Send packet

Service

Failure on 
VM A
Or
Setting change

movement

POD
Container Container

VNIC

VNIC

Fig. 4. Our developed real-time monitoring system 

review

container container container container container

detail rating ingress product

Service

VM

OVS

Virtual
Infrastructure

POD

DB
(Elastic
Search)

Topology analysis

Get 
topology

Sensor 
Management

Get 
metrics

trigger

setting

Event detection

Physical
Infrastructure

Metrics collector

Visualize
(Kibana)

VM

Microservice

VM

OVS
VM

agent agent

Request

eBPFeBPF on/off

Physical network

deploy

K8s

Docker

Openstack

Istio

Set monitor
service



B. Event detection unit 

C. Sensor management unit, agent unit, and metrics 
collector unit 

Fig. 5. Block diagram of a full-stack topology analysis 
unit 

POD

veth

cni0

flannel.1

Service kube-
apiserver

Docker
apiservereth0

eth

Linux OS

Topology analysis

Analysis
of data

Container

Sensor 
management

HTTP topology

Collect
data

ssh

HTTP

VM

process

Container
network

Fig. 6. Block diagram of an event detection unit 

Detection Event
handlerconfig

Sensor 
management

Event detection unit

trigger

kube-
apiserver

 
Fig. 7. Block diagram of a sensor management unit, 

agent unit, and metrics collector unit 

topology

Sensor list

Difference
extraction

Sensor deployment

config

Set service
to be monitored

Topology
Analysis unit

controller

Event detection 
unit

Trigger by event
Call by event

Fig. 8. One-way latency measurement between two 
containers 

Container
(Proxy)

VNIC
(vethxxxxxxxx)

Virtual router
(flannel.1)

NIC NIC

TCP packet

t2IP header

TS option 
header
TCP header

Payload

VNIC

bridge

Container
(Service A)

VNIC

Container
(ServiceB)

Container
(Proxy)

VNIC

VNIC

Container
(Others)

Monitoring
App.

Kernel space

user space

Kernel space

Get timestamp t1

loopback

TS read Program
(eBPF)

TS write program
(eBPF)

Physical NW



 

Fig. 9. Microservice used for an evaluation. 

Productpage

Details

Reviews-v1

Rviews-v3

Ratings

HTTP
Reviews-v2

Request

Response

Fig. 10. Evaluation setup of one-way latency. 

Fixed delay
20ms

VM1

Reviews-v2

Service latency

Machine1

one-way network latency

POD

VM3

Ratings

VM2

Reviews-v2

Machine2

Service

VM

Physical
machine



 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 11. Measurement results of the one-way latency 
between two service containers. 

Fig. 12. Data format example of an eBPF metrics into 
the database. 


