
Abstract—Large-scale web services are increasingly 
adopting the microservice architecture that mainly utilizes 
container technologies. Microservices are operated on complex 
configured infrastructures, such as containers, virtual 
machines, and physical machines. To ensure service quality of 
microservices, it is important to monitor not only the quality of 
services but also the quality of the infrastructures utilized by the 
services. Therefore, the metrics of the infrastructure related 
with the services should be traced. An extended Berkeley Packet 
Filter (eBPF) is a relatively new Linux’s function, which is 
effectively used as a sensor of container-network metrics. There 
are two key challenges in realizing the service-linked monitoring 
system. One challenge is making the full-stack topology between 
microservices, containers, and machines visible to set the sensor 
related with the services. Another challenge is dynamic sensor 
management that can relocate the sensor quickly after the 
topology’s change. In this paper, we propose a real-time 
monitoring system that creates a full-stack topology and 
relocates the sensor in conjunction with events from a container 
orchestrator. The system enables a dynamic deployment of the 
sensors related with the monitored services. 
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Fig. 1. Concept of our proposed monitoring system 
for a microservice-deployed infrastructure. 
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A. Full-stack topology between different layers 

B. Dynamic sensor deployment driven by a topology 
change 

Fig. 2. Overview of sensor deployment combined with 
the service. 
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A. Topology analysis unit 

1) Extract relationships between services and pods and
the container’s name inside the pods from the kube-apiserver. 

2) Get a process IDs of the containers from Docker
apiserver in each VM and match the process IDs and the 
services. 

3) By utilizing the process ID, connect to the namespace
of the pods and investigate the VNICs (veth) to which the 
containers are connected. 

4) Login to the VMs and investigate container networks
to which the VNICs are connected. 

Fig. 3. Issue in metrics monitoring by the eBPF in the 
case of container movement. 
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Fig. 4. Our developed real-time monitoring system 
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B. Event detection unit 

C. Sensor management unit, agent unit, and metrics 
collector unit 

Fig. 5. Block diagram of a full-stack topology analysis 
unit 
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Fig. 6. Block diagram of an event detection unit 
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Fig. 7. Block diagram of a sensor management unit, 

agent unit, and metrics collector unit 
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Fig. 8. One-way latency measurement between two 
containers 
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Fig. 9. Microservice used for an evaluation. 
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Fig. 10. Evaluation setup of one-way latency. 
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Fig. 11. Measurement results of the one-way latency 
between two service containers. 

Fig. 12. Data format example of an eBPF metrics into 
the database. 


