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Abstract—  The increasing complexity of services of
telecommunications carriers has increased the burden of
operators monitoring these services and the load on the system
monitoring the target devices. Operators need to choose
appropriate monitoring settings for each component of the
services, considering the properties of each component. In
addition, whenever a component is added or changed, its
monitoring settings need to be reconfigured. Furthermore, if
operators configure incorrect monitoring settings, service
anomalies may not be detected, or quality of service may be
damaged. Therefore, the monitoring system needs to
automatically input and change the monitoring settings in
accordance with the service. In this paper, we propose a method
to dynamically adjust the monitoring interval for a monitoring
system. Finally, evaluation results show the proposed method
can reduce the monitoring overhead more effectively than the
previous method and can also ensure the accuracy of monitoring
when a service abnormality occurs.

Keywords— Software engineering, self-adaptive, Monitoring
rate, Agent-based monitoring

1. INTRODUCTION

Most services of telecommunications carriers are required
to continue to operate without stopping. To sustain these non-
stop services, their resources must be monitored. Accurate and
timely updates of resource statuses are necessary to quickly
detect failures and promptly restore service functions.

Agent-based monitoring systems are often used for
monitoring service resources. In agent-based monitoring,
agents (i.e., software for data gathering) are installed in
devices to be monitored (e.g., physical servers, virtual servers,
docker containers). When a manager (i.e., software for data
aggregation) requests data from each agent, the agents
transmit the latest resource statuses to the manager.

Examples of widely used open source software for agent-
based monitoring are Zabbix [1] and Prometheus [2].
Generally, in agent-based monitoring, a manager extracts

information from agents on the basis of a fixed monitoring rate.

Therefore, if the monitoring rate is too low, abnormalities in
services can be missed, and if the query rate is too frequent,
the network bandwidth owned by the monitoring software can
be enlarged or storage capacity for accumulating information
will be insufficient. However, in the distributed computing
environment, the manager must monitor an enormous number
of objects, thus the overhead of monitoring is significant.
Therefore, for example, in [3], the optimal fixed monitoring
interval that keeps the balance between the CPU load and the
consistency is determined by experiments.
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Methods have been proposed to adaptively adjust
monitoring rates for network traffic [4, 5, 6, 7, 8], . These
methods aim to adapt the interval of requesting to network
devices on the basis of network traffic behavior. Especially,
Self-tuning Adaptive Monitoring (SAM) [4] achieves an
appropriate tradeoff between the accuracy and the overhead of
monitoring by adopting Additive Increase Multiplicative
Decrease (AIMD) for adjusting a window function used to
calculate a new monitoring interval. However, previous
approaches tend to respond to constant small fluctuations in
the monitored data and frequently narrow the monitoring
period. Many common types of service resource data (e.g.,
CPU usage, memory usage, network Tx, network Rx) contain
constant noise, thus, in terms of the service assurance,
previous methods may not effectively reduce the overhead of
monitoring. Therefore, to achieve the right balance between
accuracy and overhead in service resource monitoring, an
adaptive monitoring interval adjusting method is required that
is robust to stationary noise.

In this paper, we propose a novel adaptive monitoring rate
control method for service assurance that is less susceptible to
constant noise in service resource data. Our method uses
cosine similarity to measure the degree of change in time
series data, and the monitoring rate is increased when an
significant sudden change occurs that is different from
previous trends. We create sample data simulating the time
series of service resources and execute the proposed method
and SAM [4] on the sample data. The sample data includes
normal parts and anomaly parts where the value increases and
decreases assuming a failure in the service. Through a
comparative evaluation, we show that our approach can keep
the monitoring interval wide in the normal part to reduce the
overhead of monitoring and shorten the interval in the
anomaly part to ensure accuracy more significantly than SAM

[4].

The remainder of this paper is organized as follows.
Section II provides detailed background and explanations of
previous approaches. Section III details the proposed method
step by step. Section IV explains how to generate time series
data to execute the proposed method. Section V describes the
experiment configuration and evaluation results. Section VI
concludes the paper.

II. BACKGROUND

This section describes the importance of service
monitoring, recent architectures of services, the marketed
products used for service monitoring and the previous
research into adaptive monitoring rate control.
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A. Service Assurance

Services of telecommunications carriers are often required
to stay on 24 hours a day, 7 days a week. Leaving a service
failure obligates a carrier to pay a penalty determined by a
service level agreement (SLA), which can be huge loss to
revenue. Thus, carriers generally form specialized teams to
perform 24-hour service assurance.

Service assurance can be divided into six processes:
monitoring, analysis, problem isolation, recovery policy
decision, recovery execution, and confirmation of recovery.
These processes are sequentially processed starting from
monitoring when there is a service failure. Therefore, the
accuracy of the monitoring process is important because it
affects all five subsequent processes. That is, the monitoring
process must be able to collect fine-grained information when
a service anomaly occurs.

B. Microservice Architecture

Telecommunications carriers have recently come to adopt
a microservice architecture in which small services operate in
cooperation to form one service. Microservice architectures
are widely used to speed up updates and scaling. In the
microservice architecture, functions that were large
components in a monolithic architecture are decomposed into
small independent functions, thus the number of monitoring
targets becomes larger than that in the conventional
architecture.

The monitoring process uses resources such as network
bandwidth for acquiring information from monitoring targets
and disk capacity for accumulating the acquired information.
In the microservice architecture, due to the enormous number
of devices to be monitored, the amount of resources used in
the monitoring process (overhead) increases [9]. Therefore, to
reduce the overhead, the monitoring process is required to
reduce the query rate as much as possible when the service is
in a normal state.

C. Monitoring System

There are two kinds of monitoring implementation
methods: agentless monitoring and agent-based monitoring.

Agentless monitoring involves collecting information
without installing software for monitoring on physical or
virtual devices to be monitored. Examples include monitoring
the life and death of a server by pings or checking the
availability of the service by transmission control protocol
(TCP) port monitoring. However, for service assurance, it is
necessary not only to simply monitor life and death but also to
acquire detailed state transitions of service resources. Thus,
further agent-based monitoring is required.

Agent-based monitoring requires two components: agents
and the manager. An outline of the agent-based monitoring
system is shown in Fig. 1. Agents are software for data
gathering from monitoring target devices (e.g., physical
servers, virtual servers, docker containers). The manager is
software for data aggregation. When the manager requests
information from each agent, agents transmit the latest data of
a service resource to the manager. Zabbix [1] and Prometheus
[2], which are open source software for agent-based
monitoring, are widely used for service monitoring.

In the current agent-based monitoring system, the query
rate is fixed for each target device to be monitored. For
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Fig.1 Outline of Agent-based Monitoring System
example, in Zabbix [1], the query rate setting exists under the
name “update interval,” and this must be entered as a fixed
value. Although the query rate can be changed flexibly during
the day and night, there is no function to change it dynamically
at any time.

D. Related Work

For dynamically adjusting the monitoring interval, two
main methods have been proposed: a threshold-based
approach [5] and a prediction-based method [4, 6].

‘ Information gathering ‘
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The threshold-based approach [5] modifies the monitoring
interval on the basis of the absolute value of the difference
between two consecutive metric values. For example, two
kinds of threshold values a and b are prepared. When the
difference exceeds the threshold value a, the monitoring
interval decreases at a certain rate, and when the difference is
less than the threshold value b, the monitoring interval
increases at a certain rate.

The prediction-based approach [6] modifies the
monitoring interval on the basis of the history of the most
recent metric measurements. Specifically, the predicted value
of the next metric x,, is calculated on the basis of the latest n
metric history xq, ... ,Xx,. When the next actual measured
value x,,4 arrives, the differences between the actual two
consecutive metric values x,,,; — X, and the prediction error
Xp — X are compared.

SAM [4] proposed by Tangari et al. is classified as a
prediction-based method. SAM adopts AIMD for adjusting a
window size used to calculate a predicted value of the metric
Xp- If it is decided to extend the monitoring interval from the
immediately preceding interval, the window size N used to
calculate the predicted value is increased by one, and in other
cases, N is halved. AIMD can discard the history of metrics
that have become obsolete due to drastic changes in the metric
tendency. SAM has achieved better monitoring accuracy
(evaluated in terms of Root Mean Square Error (RMSE)) with
less monitoring frequency than the previous methods [5, 6] in
many test cases.

However, SAM tends to respond to small and constant
variations in the amount of change and to frequently reduce
the monitoring interval. In service resource monitoring,
resources remain healthy for many hours, otherwise the
service becomes unusable with frequent maintenance time.
Therefore, SAM does not effectively reduce monitoring
overhead in service resource monitoring. Thus, a new adaptive
monitoring rate control method is required that is resistant to
constant noise.



III. PROPOSED METHOD

This section proposes a new monitoring rate control method
to solve the problems described in subsection II-D.

The proposed method assumes the use of agent-based
monitoring software. The proposed method first removes
noise in agents and then adjusts the monitoring interval on the
basis of the prediction of the metric in the manager.

First, we first describe the overall algorithm of the
proposed method. Then, the outline of the noise elimination of
the metrics in the agent is explained, and finally, the algorithm
of the prediction-based monitoring rate control method in the
manager is described.

A. Outline of the Proposed Method
The algorithm of the whole proposed method is as follows.

Agents acquire the time series data from each device
to be monitored and store the information in the data
storage part of the agent. Old data other than the latest
period N is discarded at any time.

The agent removes noise by referring to the most
recent data in period N, creates new period N data,
and stores it in the data storage unit of the agent.

The manager requests the agent to send the latest data
at a specific interval. At this time, both data before
noise removal and data after noise removal are
requested.

When the manager receives the latest data from the
agent, the manager stores both the data before noise
removal and the data after noise removal in the data
storage part of the manager. The data before noise
removal is used for presentation to operators, and the
data after noise removal is used for analysis for
adjusting the monitoring rate. After the data is
stored, the timing of requesting the agent to send
information is determined by the monitoring rate
control method.

B. Monitoring Rate Control Algorithm in the Manager

In this method, the degree of metric changes is calculated
in order to determine the degree of adjustment of the
monitoring rate. In the method of comparing the time series
patterns of a fixed window size and defining the abnormality
degree (e.g. Singular Spectrum Transformation), a delay
occurs between the change of the metric and the increase, of
the abnormality degree. Since the monitoring rate adjustment
needs to be quick in response to metric changes, delay in
detecting changes is not preferable. The change finder [10]
can react quickly to changes in metrics, but the range of
abnormality values varies greatly depending on the
parameters. Since the abnormality value is used to calculate a
new monitoring rate, the abnormality value need to be within
a certain range. The manager executes the monitoring interval
adjustment method on the basis of the cosine similarity. This
method can detect changes in metrics without delay and
handle the degree of abnormality within a certain range.

The monitoring interval adjustment method described in
this section consists of four steps: calculate prediction (I),
calculate change score on the basis of vector similarity (II), fit
change score set by normal distribution (III), and determine
monitoring interval (IV). The algorithm is described in detail
below.
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Fig.2 Prediction Vector and Actual Measured Value
Vector
I.  For the noise-removed data sequence x,, Xy, ..., X,
and the time stamps ¢,,ty, ..., t,, corresponding to
each data point, the predicted value x,, at time t is
calculated with formula (1), where N is the window
size.
n—-1
ther — Ty

Xiy1 — X
N-—-1

Xp + €y

. t;
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II.  Let the actual measured value at time t,,,; be X, 44.
By defining the prediction vector y, and the actual
measured value vector ¥, as shown in Fig. 2, the
cosine similarity S(,, 3;) can be calculated with

formula (2).

SWp V) = 7= —— 2)
Gp 7l - 171

The change score a(x, ) of data x,,,, at time ¢,
is defined as follows.

if S(vp, %) =0:
a(tps1) =1-S(p W)
else :

3)

4

a(xn+1) =1

III. Assuming that the data point set obtained by
logarithmically transforming the change scores
a(Xp_n41), -, a(xy,) corresponding to the data
points X,_n41, ---, X, follows a normal distribution,
the parameters of the probability density function of

the normal distribution are estimated.

IV. For the probability density function obtained in step
III, the ;% points and a,% points of the
probability distribution are taken as a; and a,,
respectively, and the interval T, to the next data
point is determined by formulas (5), (6), and (7),
where Ty, 4, and Ty, are the upper and lower limits

of the monitoring interval, respectively.

ifa(xn41) 2 g

)

Thew = Tax



ifa; < alrns) < ay:

T, — T
= Lamm(a(xn+1) — ;) + Trnax (6)

Thew —
a; 2

ifa(xnyr) <@y
= Tmin 7

Tnew :

With the above procedure, T),,,, can be determined at any
time. Statistical analysis is performed on the degree of
abnormality in the history of metric changes, and the
monitoring interval is reduced when the degree of abnormality
is determined to be sufficiently large, so the proposed method
is less susceptible to weak fluctuations.

IV. GENERATION OF TIME SERIES DATA

In this section, time series data is created to execute the
proposed method and the previous method.

To execute the algorithm, we emulate time series data as
service resource data. The emulated time series data contains
abnormal fluctuations assuming a service failure. We created
multiple test cases with different types of long-term trends and
different anomaly arrival rates.

A. Emulate Time Series Data

The time series data is created by synthesizing three time
series: base data representing stationary noise, trend data
representing long-term fluctuation tendency, and abnormal
data representing sudden data fluctuation assuming a service
failure. The number of data points is 10,000, and the time
stamp interval is 5 seconds.

The base data is created by using a random function on the
basis of the Poisson arrival process. Fig. 3 shows an example
of the base data. It represents the constant noise that exists in
CPU usage, memory usage, network traffic, etc.

Three types of trend data are prepared: no trend, upward
trend, and periodic fluctuation. The degree of use of the
service varies depending on the number of days that have
elapsed since the service was started and the time zone. Many
types of service resource data are affected by such a trend
change. As an example, Fig. 4 shows the outline of the trend
data of an upward trend case.

Two types of anomaly data are prepared: low-frequency
anomaly and high-frequency anomaly. The burst of monitored
metric is assumed to be an anomaly event that appears in
service resource data. An anomaly event occurs every 5
seconds at 0.1% in the low-frequency case and 0.5% in the
high-frequency case. Fig. 5 shows an example of the anomaly
data in the low-frequency case.

The simulated service resource data used in the experiment
is obtained by merging base data, trend data, and abnormal
data. As an example, the experimental time series data in the
case of the upward trend and the low-frequency burst are
obtained as shown in Fig. 6 by combining the data in Fig. 3,
4, and 5.

B. Normal Phase and Anomaly Phase

In simulated time series data, normal phases and anomaly
phases can be defined.

Base
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Fig.5 Example of Anomaly Data (Low-frequency
Case)
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Fig.6 Time Series Data after being Synthesized
(Upward Trend and Low-frequency Burst Case)

The normal phase is the part where no anomaly occurs in
the service and only the stationary noise and trend appear in
the time series data. Considering that the simulated time series
data can be decomposed into three components of base, trend
and anomaly, the value of the anomaly component in the
normal phase is 0.

The anomaly phase is the part where the value sharply
rises and steeply falls in the simulated time series data. In other
words, in the anomaly phase, the anomaly component in the
time series data is larger than 0.

The monitoring interval adjustment method in the service
resource monitoring is required to keep the monitoring

60

551 Anomaly Phase Anomaty Phase

1 Normal Phase Normal Phase Normal Phase

0101:30 0102:00 0102:30 0103:00 0103:30 0104:00 0104:30 01 05:00
Time

Fig.7 Normal and Anomaly Phases in Time Series
Data
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interval long and the overhead low in normal phases and to
shorten the monitoring interval in anomaly phases to obtain
precise information. In short, different behaviors are required
in the normal and anomaly phases. Therefore, in this paper,
we evaluate the performance of the proposed method and the
prior method in normal and anomaly phases.

V. EVALUATION

This section evaluates the performance of the proposed
method and SAM. The proposed method and SAM were
applied to the created time series data, and experiments were
performed while changing the parameter (max monitoring
interval). We evaluate the average monitoring intervals for
anomaly and normal parts in time series data.
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A. Experiment

Since there are three types of trends (no trend, upward
trend, and periodicity trend) and two types of anomaly
occurrence rates (low-frequency anomaly and high-frequency
anomaly), the proposed method and SAM were implemented
in six test cases..
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Fig.8 Experimental Results of Proposed Method and SAM
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The minimum monitoring interval was set to 5 seconds,
because the time stamp interval of the created teat case data is
5 seconds. The maximum monitoring interval was 10 to 100
seconds, and the experiment was performed with a shift of 10
seconds (10 patterns in total). The parameters in the proposed
method a; and a,were set to 0.6 and 0.95, respectively.

Both the proposed method and SAM require past data to
adjust the monitoring interval. Therefore, the first 1000 data
of the test case data were used as pre-learning data.

Fig. 8 shows the results of applying the proposed method
and SAM to six patterns of test case data and summing up
mean monitoring intervals for normal and anomaly phases.

B. Discussion

In all test cases, the proposed method keeps the monitoring
interval in the normal phase close to the maximum interval. In
addition, it shortens the monitoring interval by the normal
phase in the anomaly phase in all cases. The proposed method
can adjust the monitoring interval in response to an abnormal
sudden increase in the value, with almost no effect from the
normal trend and stationary noise.

In all cases, results of SAM show almost no difference in
the average monitoring intervals between normal and anomaly
phases. In addition, in both phases, SAM selects a monitoring
interval that is shorter than the interval in the anomaly phase
of the proposed method. The reason for this is that SAM reacts
to stationary noise and constantly tries to reduce the
monitoring interval.

Although SAM is superior to the proposed method in
terms of accuracy of monitoring in anomaly phases, SAM
cannot be expected to reduce overhead in normal phases. The
proposed method can reduce the overhead more effectively
than SAM in normal phases. In addition, the proposed method
can detect the essential fluctuation and adjust it dynamically
for precise monitoring. The proposed method provides both
accuracy in the event of service failure and overhead reduction
in normal times, which are required for service resource
monitoring.

Comparing the results of the proposed method for the
patterns of low- and high-frequency anomalies, the
performance of shortening the monitoring interval in the
anomaly phases deteriorates more in the high-frequency
anomaly case than in the low-frequency anomaly one. This is
because in the high-frequency anomaly case, the anomaly
phase arrives in a very short span. When the anomaly phase
continues without a long normal phase, the proposed method
learns the change degree of the metric in the anomaly phase
and has difficulty reacting to the rapid increase or decrease of
the metric. Therefore, the proposed method is more suitable
for monitoring data with a low frequency of service resource
anomalies.

Comparing the results of the proposed method with the
patterns of periodicity trend and other trends, the effect of
narrowing the monitoring interval is slightly weaker in the
periodicity trend than in the other trends. By adding a
periodicity trend, the range of fluctuation pattern in the value
during normal phases expands. It is considered that the
proposed method had difficulty reacting to the fluctuations in

anomaly phases because it had learned such various
fluctuation patterns. There is almost no difference in the
results of the proposed method for the patterns of upward
trend and no trend. The periodic trend given in this paper is
about a 4-hour cycle. However, the periodic trends in the
services of telecommunications carriers are brought about by
people’s behaviors, so most of them are daily or monthly
cycles. Therefore, the periodicity trend existing in the actual
service can be approximated to the upward trend or the
downward trend, and its effect is considered to be negligible.

VI. CONCLUSION
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In this paper, we proposed a novel adaptive monitoring
rate control method for service assurance that is robust to
constant noise in service resource metrics. Our method uses
cosine similarity to measure the change degree of value, so the
monitoring interval can be shortened only when an essential
change occurs.

Evaluations conducted using various test cases show that
the proposed method can reduce the monitoring overhead
more effectively than the previous method and can also ensure
the accuracy of monitoring when a service abnormality occurs.
However, the learning accuracy deteriorates when a service
abnormality frequently occurs because the proposed method
learns the abnormality.

In future work, we will attempt to improve the
performance when an anomaly frequently occurs by adding a
dynamic window size adjustment function to the proposed
method. In addition, although the monitoring interval is
adjusted for a single metric in this paper, we are considering
expanding the method to support multiple metrics in the future.

REFERENCES
[1]
[2]
[3]

Zabbix, https://www.zabbix.com/jp/

Prometheus, https://prometheus.io/

G. Yang, K. Wang, and X. Zhou, “An adaptive resource monitoring
method for distributed heterogeneous computing environment”,
Parallel and Distributed Processing with Applications, 2009 IEEE
International Symposium on, pages 40—44. IEEE, 2009.

G. Tangari, D. Tuncer, M. Charalambides et al., “Self-Adaptive
Decentralized Monitoring in Software-Defined Networks”, IEEE
Transactions on Network and Service Management, 2018, pp. 1277-
1291.

S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “PayLess: A
Low Cost Network Monitoring Framework for Software Defined
Networks,” in Proc. IEEE/IFIP NOMS, Krakow, Poland, May 2014,
pp. 1-9.

T. Zhang, “An Adaptive Flow Counting Method for Anomaly
Detection in SDN,” in Proc. ACM CoNEXT, Santa Barbara, CA, USA,
Dec. 2013, pp. 25-30.

Z. Fu and N. Venkatasubramanian, “Adaptive Parameter Collection in
Dynamic Distributed Environments”, The 21% International
Conference on Distributed Computing Systems, 2001, pp. 469-478.

(4]

[3]

(el

(7]

[8] B. Adipat and D. Zhang, “A real-time adaptive traffic monitoring
approach for multimedia content delivery in wireless environment”,
Systems Man and Cyvernetics 2003 IEEE International Conference,

2003, pp. 280-285.

P. Las-Casas, J. Mace, D. Guedes, and R.Fonseca, “Weighted
Sampling of Execution Traces: Capturing More Needles and Less
Hay”, SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA, pp326-
332.

J. Takeuchi and K. Ymanishi, “A Unifying Framework for Detecting
Outliers and Change Points from Time Series”, IEEE Transactions on
Knowledge and Data Engineering, Vol. 18, No. 4, 2006, pp. 482-49

(91

[10]



